
D I S S E R T A T I O N

Random Bipartite Graphs
and their Application to Cuckoo Hashing

ausgeführt zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften unter der Leitung von

Univ-Prof. Dipl.-Ing. Dr. techn. Michael Drmota
Institut für Diskrete Mathematik und Geometrie

E104

eingereicht an der Technischen Universität Wien

Fakultät für Mathematik und Geoinformation

von

Dipl.-Ing. Reinhard Kutzelnigg
0025840

Badsiedlung, 385

8250 Vorau

Datum Unterschrift



ii



Kurzfassung

Diese Doktorarbeit beschäftigt sich mit der Ermittlung der Eigenschaften spezieller zufälli-
ger Graphen, die in enger Verbindung mit dem Algorithmus Cuckoo Hashing stehen. Die-
ser wurde in Pagh and Rodler [2004] eingeführt und weist als besondere Eigenschaft eine
konstante Zugriffszeit auf, die im Gegensatz zu herkömmlichen Hashalgorithmen nicht
nur im Durchschnitt gilt. Weitere Resultate betreffend Cuckoo Hashing sind unter ande-
rem in den Artikeln Devroye and Morin [2003], Dietzfelbinger and Weidling [2007] und
Fotakis et al. [2003] angeführt, eine detaillierte Analyse aller Aspekte fehlt jedoch.

Diese Dissertation kann folgendermaßen in zwei Aspekte unterteilt werden. Der erste
Schwerpunkt der Arbeit ist eine genaue Analyse des mittleren Verhaltens von Cuckoo
Hashing. Dazu zählt insbesondere die Wahrscheinlichkeit, dass die Konstruktion der Da-
tenstruktur erfolgreich ist. Es gilt, dass der Aufbau der Hashtabelle asymptotisch fast
immer gelingt, so ferne die Auslastung einen festen Wert kleiner als 0.5 nicht überschrei-
tet. Im so genannten ”kritischen Fall“, der einer Auslastung von 0.5 entspricht, sinkt die
Erfolgswahrscheinlichkeit asymptotisch jedoch auf einen Wert von ca. 0.861. Weiters wird
eine Schranke für den mittleren Aufwand, der zum Aufbau der Datenstruktur notwendig
ist, hergeleitet die linear mit der Größe der Datenstruktur wächst. All diese Untersuchun-
gen basieren auf einer Analyse des so genannten Cuckoo Graphen, welcher ein zufälliger
bipartiter Graph ist, dessen Eigenschaften in engem Zusammenhang zur Datenstruktur
stehen. Dieser Graph wird mit Hilfe von erzeugenden Funktionen modelliert und anschlie-
ßend wird durch Verwendung einer (doppelten) Sattelpunktsmethode eine asymptotische
Approximation der Koeffizienten ermittelt. Insbesondere lassen sich dadurch Eigenschaf-
ten wie die Komponentenstruktur des Graphen, die Größe der Baumkomponenten, die
Anzahl der im Graphen enthaltenen Kreise oder die Wahrscheinlichkeit, dass keine Kom-
ponente auftritt, die mehr als einen Kreis beinhaltet, ermitteln. Diese Resultate sind
natürlich auch in andern Zusammenhängen von Interesse, z.B. in der Genetik, siehe Bla-
siak and Durrett [2005].

Ein weiterer Schwerpunkt liegt in der Untersuchung des Einflusses von Modifikatio-
nen der dem Verfahren zu Grunde liegenden Datenstruktur. Insbesondere werden zwei
neue Verfahren, ”asymmetrisches Cuckoo Hashing“ und ”vereinfachtes Cuckoo Hashing“
genannt, eingeführt. Deren Analyse beruht wiederum auf dem Studium von zufälligen
Graphen, die an das jeweilige Verfahren angepasst werden. Weiters wird eine asympto-
tische Analyse des Verhaltens von Suchoperationen all dieser Algorithmen durchgeführt
und diese Ergebnisse werden mit den bekannten Resultaten der Standardalgorithmen Li-
neares Sondieren und Double Hashing verglichen. Diese Untersuchung zeigt, dass der
mittlere Aufwand von Such- und Einfügeoperationen durch Verwendung von verein-
fachtem Cuckoo Hashing im Vergleich zu allen anderen Varianten sinkt. Verglichen mit
herkömmlichen Hashalgorithmen die auf Offener Adressierung basieren, ergibt sich eine
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Kurzfassung

Beschleunigung von Suchvorgängen, jedoch steigen die Kosten von Einfügeoperationen.
Eine Übersicht der in dieser Arbeit hergeleiteten Resultate bezüglich Cuckoo Hashing ist
in der an die englischsprachigen Kurzfassung angeschlossenen Tabelle enthalten.

Schlussendlich wird ein in C++ implementierte Softwarepaket erstellt, das die Simu-
lation von allen oben erwähnten Hashalgorithmen beherrscht. Mit Hilfe eines weiteren
Programmes ist es auch möglich den Wachstumsprozess von gewöhnlichen und bipartiten
Graphen zu simulieren. Diese Software wird dazu verwendet um die theoretische Analyse
mit numerischen Daten zu unterlegen.

Diese Arbeit steht im Zusammenhang mit den Artikeln Drmota and Kutzelnigg [2008],
Kutzelnigg [2006] und Kutzelnigg [2008] und wurde vom FWF-Projekt S9604 ”Analy-
tic and Probabilistic Methods in Combinatorics“ und dem EU FP6-NEST-Adventure
Programm, Projekt Nummer 028875 (NEMO) unterstützt.
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Abstract

This thesis deals with the analysis of a special kind of random graphs and their applica-
tion to the analysis of a relatively new hash table data structure called cuckoo hashing,
that was introduced in Pagh and Rodler [2004]. Its main notable feature is, that it pro-
vides constant worst case search time. Further results concerning cuckoo hashing can be
found in several other papers, in particular Devroye and Morin [2003], Dietzfelbinger and
Weidling [2007], and Fotakis et al. [2003]), however no detailed analysis has been carried
out so far.

The contribution of this thesis is twofold. First, we present a precise average case anal-
ysis of cuckoo hashing. In particular, we determine the probability that the construction
of a cuckoo hash table produces no conflicts. We conclude that the construction is asymp-
totically almost always successful, if the load factor does not exceed a fixed limit less than
0.5. Moreover, we consider the “critical case”, that corresponds to the load factor 0.5, and
obtain, that the asymptotic success rate is reduced to approximately 0.861. Furthermore,
we give an upper bound for the construction time that is linear in the size of the table.
The analysis of the algorithm is based on a generating function approach to the so called
Cuckoo Graph, a random bipartite graph that is closely related to the data structure.
We apply a double saddle point method to obtain further asymptotic results concerning
the structure of the graph, such as tree sizes, the number of cycles and the probability
that no component containing more than one cycle occurs. Of course, there exist other
applications of this results e.g. in genetics, see Blasiak and Durrett [2005].

Second, we analyse the influence on the performance caused by modifications of the
underlying structure of the cuckoo hash table. The obtained data structures are named
“asymmetric cuckoo hashing” and “simplified cuckoo hashing”. Again, we provide an
average case analysis, that is now based on different random graph models. Further, we
perform an asymptotic analysis of the search costs of all this versions of cuckoo hashing
and compare this results with the well known properties of double hashing and linear
probing. In particular, our analysis shows, that the expected number of steps of search
and insertion operations can be reduced by using the simplified version of cuckoo hashing
instead of any other cuckoo hash algorithm. Compared to standard algorithms based on
open addressing, we notice that the simplified data structure offers increased performance
for search operations, but the expected construction time of the hash table increases.
Table 0.1 presents an overview of the properties of cuckoo hashing algorithms.

Additionally, a C++ software that implements cuckoo hashing (including several mod-
ifications) as well as standard hash algorithms (e.g. double hashing or linear probing)
is developed. Moreover, an additional program is provided to simulate the growth of
bipartite or usual random graphs. All this software is used to support the analysis by
numerical results.
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Abstract

This thesis is based on the research papers Drmota and Kutzelnigg [2008], Kutzelnigg
[2006], and Kutzelnigg [2008]. Major part of the work was done within the FWF-project
S9604 “Analytic and Probabilistic Methods in Combinatorics” and the EU FP6-NEST-
Adventure Programme, Contract number 028875 (NEMO).
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Chapter 1
Hashing

1.1 Introduction

This chapter gives a short survey of hash table based data structures which is a frequently
used tool in computer science. Their efficiency has strong influence on the performance of
many programs, because various applications are based on dictionary-like data structures.
For example, the symbol table of a compiler for a computer language is often based on
hashing (see, e.g., Cormen et al. [2001]). A further example is the operating system Linux,
which relies on hash tables to manage pages, buffers, inodes, and other kernel-level data
objects (see, e.g., Lever [2000]).

In the following, we are interested in a data structure that supports insertion, search
and potentially also deletion operations. Further, we suppose that each data record is
uniquely determined by a key. For instance, the (Austrian) national insurance number
might be such a key assigned to an individual person. A data base query providing this
number might give information as the name of the owner, age, insurance status and so
on. Generally, such data structures are often called associative arrays. We may consider
them as an extension of a simple array, the latter is a group of homogeneous elements of
a specific data type. A hash table is just one possible implementation of an associative
array, others are for instance self-balancing binary search trees or skip lists (see, e.g.,
Cormen et al. [2001], Knuth [1998], Kemper and Eickler [2006], Pugh [1990]).

Usually, the number of stored data records is much smaller than the number of possible
keys. For example, the Austrian social insurance number consists of 10 decimal digits, but
there are only about 8 Million inhabitants in Austria. Thus, it would be very inefficient
to use an array with 1010 cells to store all this data. In contrast to this, hashing requires
memory proportional to the maximal number of stored keys only. We achieve this by
using the so-called hash function to transform the key to a number of limited range
instead of using the key as an array index directly. Figure 1.1 illustrates this approach.
The value of the hash function of a given key is called the hash value of that key. This
value provides us a location of the hash table, where we might store the data.

There is of course one big problem left. What should we do if two different keys collide,
that is, there exist keys that try to occupy the same memory cell? Such a collision can
be seen in Figure 1.1, because the keys d and g try to access the same storage place. We
will discuss possible solutions later on, first we consider the question how likely it is, that

1



1 Hashing

set of all possible keys

actual keys
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Figure 1.1: An associative array implemented by a hash table.

different keys share the same hash value under the assumption that these numbers are
selected uniformly at random.

The well known birthday paradox shows us that collisions are likely to appear (see, e.g.,
Cormen et al. [2001], Flajolet and Sedgewick [2001]). To be more precise, the probability
that at least two people in a room are born on the same day of the year is greater than
50% if at least 23 people are present in the room. Transferred to hash tables, the solution
of the generalised problem tells us to expect collisions, if the number of keys exceeds the
square-root of the table size. However this occurs in all practical applications, otherwise
the data structure would waste too much memory.

The properties of the chosen hash function do have great influence on the performance
of the data structure. For instance, if all keys are mapped to the same position of
the table, the performance decreases dramatically. Thus, it is important that the hash
function distributes the values uniformly over the table size range m. Usually, the analysis
of the performance of hash algorithms is based on the assumption that the hash values
are independent uniformly drawn from 0, 1, . . . ,m − 1. Hash functions, that satisfy this
model under practical conditions will be discussed in Section 1.6.

Clearly, the ideal solution would be to avoid collisions completely. If we assume that
all keys are known in advance, it is possible to choose the hash function in such a way,
that no collisions occur. This approach is called perfect hashing and will be discussed in
Section 1.4. Unfortunately it is very costly to search such a perfect hash function.

Classical techniques for dealing with collisions are briefly described in the following two
sections.

1.2 Hashing with open addressing

Within the area of open addressing, we resolve collisions by successively examining the
m cells of the table, until we discover an empty position. By doing so, we define a probe
sequence of table positions

h(x, 0), h(x, 1), h(x, 2), . . . , h(x,m− 1)

for each key x. The first element of this sequence is of course the usual hash function h(x).
If this position is already occupied, we inspect h(x, 1) etc. until we either find an empty

2



1.2 Hashing with open addressing

cell and store the key at this position or we perform a run through the whole sequence.
In the latter case, an insertion is not possible. An example can be found in Figure 1.2.
Obviously, the probe sequence should be a permutation of the set {0, 1, 2, . . . ,m − 1},
which implies that insertion is only impossible if the table is fully occupied. Using this
approach, the number of keys stored in the table can not exceed the number of initially
allocated storage cells, except if the complete data structure is rebuilt using a table
of increased size. Hence this algorithm is sometimes referred to as closed hashing, see
Binstock [1996].

The most common ways to choose the probe sequence are the following (see, e.g.,
Gonnet and Baeza-Yates [1991],Knuth [1998]):

• Linear probing: h(x, i) = (h(x) + i) mod m. The algorithm uses the simplest
possible probe sequence and is thus easy to implement. The major disadvantage of
linear probing is, that it suffers from a problem known as primary clustering. Long
runs of occupied cells occur with high probability, what increases the average cost
of an operation. However, the practical behaviour might be better than theoretical
analysis suggest, because of the memory architecture of modern computers. This is
due to the fact that it might take less time to access several keys stored in adjoining
memory cells if they belong to an already loaded cache line than to resolve a cache-
miss (see Binstock [1996],Black et al. [1998],and Pagh et al. [2007] resp. Heileman
and Luo [2005] for a different point of view).

• Quadratic probing: h(x, i) = (h(x) + c1i + c2i
2) mod m, where c1 and c2 are con-

stants. Although the expected performance of quadratic probing is decreased com-
pared to linear probing, one of the main problems has not been resolved: Keys
sharing the same hash value possess the identical probe sequence too. Thus a
milder form of clustering, called secondary clustering, arises.

• Double hashing: h(x, i) = (h(x) + ih2(x)) mod m. The algorithm uses a second
hash function h2 that determines the increment between two successive probes. As
a result, the probe sequence depends on two ways on the actual key. The value
of h2 should be relatively prime to m to ensure that all cells are covered by the
probe sequence. This algorithm is still easy to implement and offers better average
performance than linear and quadratic probing (see Knuth [1998]) and is hence the
most common algorithm based on open addressing.

• Exponential hashing: h(x, i) = (h(x)+aih2(x)) mod m, where a is a primitive root
of m. The exponential double hash family was first suggested by Smith et al. [1997]
and further improved by Luo and Heileman [2004] to the form considered here.
This type of hash function tends to spread the keys more randomly than standard
double hashing, and it still leads to probing sequences of maximum length for all
keys.

• Uniform probing: Uniform probing is a theoretical hashing model what assumes
that the order in which the cells are probed is a random permutation of the num-
bers 0, 1, . . . ,m−1. Hence it is easy to analyse but almost impossible to implement.
Nonetheless, double hashing and uniform probing are indistinguishable for all prac-
tical purposes (see Gonnet and Baeza-Yates [1991]).
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1 Hashing

A major disadvantage of the just mentioned algorithms is, that it is not allowed to
delete elements straight away, because otherwise keys might become unfindable. More
precisely, we are not allowed to erase a key stored at position k if there exists a key x on
position l such that k = h(x, i) and l = h(x, j) for a j greater than i hold. This problem
can be overcome by “lazy deletions”. Instead of removing a key permanently, we just
mark the element as deleted. Such positions are considered as empty during insertions,
but on the other hand, they are treated like occupied cells during search operations. This
idea is recommendable only if deletions are rare, because cells will never become empty
again. Thus an unsuccessful search might take m steps, if no more empty cells exist,
although the table is not full.

However, when linear probing is being used, it is possible to implement a more efficient
deletion algorithm, to overcome this problem. This is due to the fact that only the run
of keys starting immediately after a position k till the occurrence of the first empty cell
could be influenced, if slot k is erased. Hence, we can delete a key x by modifying the
table as it would have been, if x had never been inserted. See [Knuth, 1998, Algorithm
R] for details. In contrast, the same approach is impracticable for other variants of open
addressing, because each key could be influenced by a single deletion.

Several suggestions have been made to improve the behaviour of search operations of
double hashing. This is based on the assumption that searches are much more common
than insertions. Thus, it seems to be worth pursuing more work by rearranging keys
during an insertion to speed up search operations. The most important techniques are
(see, e.g., Gonnet [1981],Knuth [1998],Munro and Celis [1986]):

• Brent’s variation (Brent [1973]): Whenever a collision appears, double hashing
resolves this by moving the last inserted key according to its probing sequence until
the first empty cell is found. Brent suggests to check if the keys occupying the
locations along this probing sequence can be moved to an empty location, such
that the total number of steps to find all keys decreases. More precisely, let di
equal the number of steps that are required to move the key occupying the i-th
cell of the probing sequence to an empty position. Brent’s algorithm selects the
position i that minimises i+ di.

• Binary tree hashing (Gonnet and Munro [1977]): This algorithm is a generalisation
of Brent’s variant. Not only the keys occupying cells along the probing sequence of
the newly inserted key might me moved, this kicked-out keys might further displace
keys along their own probing sequence and so on. This modification leads to a slight
improvement in the search performance compared to Brent’s algorithm. However,
this variant requires additional memory, is much more complicated1, and it takes
more time to perform insertions.

• Robin Hood hashing (Celis et al. [1985]): In contrast to the previous rearranging
schemes, this algorithm does not influence the expected number of steps to perform
a successful search, however it does affect the variance. This can be easily done as
follows: Instead of always moving the last inserted key, we resolve collisions moving
the key that is closer to its initial position. Hence the expected length of longest
probing sequence is reduced without a significantly higher insertion cost.

1This is due to the fact that we have to consider much more different probing sequences.
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Figure 1.2: Collision resolution by open addressing.

An asymptotic approximation of the expected cost of the of search operations for non-
full tables is given in Table 1.1. More details on algorithms based on open addressing can
for instance be found in Cormen et al. [2001], Gonnet and Baeza-Yates [1991], or Knuth
[1998].

1.3 Hashing with chaining

By using hashing with chaining, a linked list (see, e.g., Cormen et al. [2001]) is used for
each table entry to store all the keys, mapped to this position. The hash table itself
might either consist of pointers only (this is called direct chaining) or represents an array
of keys and pointers (this is called separate chaining) as depicted in Figure 1.3. To search
a key, we evaluate the hash function and compare the elements of the corresponding list
till the key is found or the end is reached.

We may decrease the cost of an unsuccessful search, if we keep all the lists in order by
their key values. Note that this has no influence on the cost of a successful search, but
we have to perform a search operation before an insertion. However, we should do the
latter in any way, to assure that no duplicates are produced. Thus, there is no extra cost
in keeping the lists in order.

A major advantage of hashing with chaining is, that the number of keys stored in the
table might exceed the size of the table. Hence this algorithm is sometimes unfortunately
called open hashing, what might easily be confused with open addressing. As a fur-
ther benefit, deletions can be performed without complications, in contrast to algorithms
based on open addressing (except linear probing). On the other hand, there are two
drawbacks. First, hashing with chaining needs additional memory to store the pointers.
However, this might be compensated by the fact, that it is sufficient to store a “abbre-
viated key” a(x) instead of x, if x is fully determined by a(x) and h(x). Furthermore
a memory management to allocate resp. disallocate list elements is needed. Second, it
takes additional time to handle the pointers. Hence open addressing is usually preferable
if we use “short” keys such as 32-bit integers and hashing with chaining is recommended
for large keys like character strings.

An asymptotic approximation of the average cost of search operations of various hash

5



1 Hashing

set of all possible keys

actual keys

a

b
c

d
e

f
g h

i

j

k

a

i

k

hash function
d e

Figure 1.3: Collision resolution by chaining.

successful search
longest expected

unsuccessful search
successful search

linear probing 1
2

(
1 + 1

1−α
)

O(log n) 1
2

(
1 + 1

(1−α)2

)
quadratic probing 1 + log 1

1−α − α
2

1
1−α + log 1

1−α − α

double hashing 1
α log 1

1−α − logαm
1

1−α
Brent’s variation 1 + α

2 + α3

4 + α4

15 + . . .
direct chaining 1 + α

2 Γ−1(m) α
separate chaining 1 + α

2 Γ−1(m) α+ e−α

Table 1.1: Asymptotic approximations of the cost of search operations. The results are
obtained under the assumption that the hash values are independent uniformly drawn
from 0, 1, . . . ,m− 1. All results are presented in terms of the load factor α, that is the
quotient of the number of keys and the memory cells of the data structure. Note that
the given results of algorithms based on open addressing do not hold for full tables.

algorithms is given in Table 1.1. More details and proof of the claimed properties can
e.g. be found in Cormen et al. [2001], Gonnet and Baeza-Yates [1991], or Knuth [1998].

1.4 Perfect hashing

The performance of hash table look-ups depends on the number of collisions. A perfect
hash algorithm tries to completely avoid collisions using an injective hash function for a
fixed set of keys. The catch is that the complexity of the construction and/or evaluation
of this function increases. Another major weak point of many perfect hash functions is,
that changing one key might force us to compute a completely new function. Therefore,
most of this algorithms are only applicable to static tables where the data content remains
unchanged after construction, but constant worst case look-up time is essential.

A survey on perfect hashing can be found in Czech et al. [1997]. For a static set of
keys, an algorithm offering constant query time using O(n) memory cells to store n keys
was first proposed by Fredman et al. [1984]. An extension of this scheme to a dynamic
dictionary was given by Dietzfelbinger et al. [1994]. However, all this solutions are more
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1.5 Cuckoo hashing

complex than the usual hash algorithms and more of theoretical interest than of practical
relevance. As a consequence, new implementations based on simple modifications of
standard algorithms with improved worst case behaviour have been suggested, see Azar
et al. [1999], Broder and Mitzenmacher [2001], Dalal et al. [2005], Devroye and Morin
[2003], Pagh and Rodler [2004], and Vöcking [2003]. One of these algorithms is cuckoo
hashing, that will be discussed in detail in the next section.

1.5 Cuckoo hashing

1.5.1 Standard cuckoo hashing

Cuckoo hashing is a relatively new hash algorithm that provides constant worst case
search time, contrary to the algorithms discussed in Sections 1.2 and 1.3. The algorithm
was first introduced by Pagh and Rodler [2001a] (see also Pagh and Rodler [2004]) and
a further analysis was done by Devroye and Morin [2003].

The algorithm is based on two tables of size m and makes use of two hash functions
h1 and h2, both map a key to a unique position in the first resp. second table. These are
the only allowed storage locations of this key and, hence search operations need at most
two look-ups.

The main idea of cuckoo hashing is to resolve collisions by rearranging keys. A new
key x is always inserted in the first table at position h1(x). If this cell was empty before
the insertion of x, the operation is complete. Otherwise, there exists a key y such that
h1(x) = h1(y) holds. We proceed moving this key y to its alternative storage position
h2(y). If this cell was preoccupied too, we proceed with this kick-out procedure until
we hit an empty cell. The algorithm is named after the cuckoo, because this ejection is
similar to the birds nesting habits. Of course, the insertion procedure may end up stuck
in an endless loop if the same keys are kicked out again and again. In the the latter
case, we perform a rehash, that is, we rebuild the whole data structure using new hash
functions. As a strong point of the algorithm, this is a rare event if an ε in the interval
(0, 1) exists, such that the number of keys n satisfies n = (1− ε)m. More details will be
given in Chapter 4. Figure 1.4 depicts the evolution of a cuckoo hash table.

Similar to the model introduced in Section 1.1, the analysis of cuckoo hashing is based
on the assumption, that the hash values of the keys x1, x2, . . . , xn form a sequence of
independent uniform random integers drawn from {1, 2, . . . ,m}. Further, if a rehash is
necessary, we assume that the new hash values are independent from previous attempts.
Hash functions suitable for the implementation of cuckoo hashing will be discussed in
Section 1.6.

We model cuckoo hashing with help of a labelled bipartite graph (see, e.g., Diestel
[2005]), that is called the cuckoo graph (see also Devroye and Morin [2003]). The two
labelled node sets T1, T2 correspond to the two hash tables. The insertion of a key x is
encoded by an edge (h1(x), h2(x)) ∈ T1 × T2. Further, we use edge labels to capture the
evolution of the hash table. That is, the edge with label j corresponds to the j-th key
that is inserted in the table.

Interestingly, the structure of this graph determines whether the hash table can be
constructed successfully or not. It is is obviously necessary that every component of the
cuckoo graph has less or equal edges than nodes, because it is impossible to store more
than k keys in k memory cells. This means that all connected components are either
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trees (i.e. they contain no cycle) or unicyclic (i.e. they contain exactly one cycle). It is
common to call a component of a graph complex if it is neither a tree nor unicyclic. On
the other hand, it is easy to see that an endless loop in the insertion algorithms cannot
occur in a tree or unicyclic component. There exist three different permitted cases that
we consider separately:

• The new edge connects two different trees and we obtain a tree component of
increased size. By induction, it is clear that each tree possesses exactly one node
that corresponds to an empty storage cell. Once this position is fixed, there exists
precisely one assignment of keys to the other memory cells. An insertion follows
the unique path from the starting point to the empty cell in this tree component.
Hence the number of steps is bounded by the component size of the tree and more
precisely by the tree’s diameter. See Figure 1.5 for an example.

• Both storage locations of the new inserted key belong to the same tree component.
However there is no substantial difference compared to the previous case, instead
that a unicyclic component arises.

• One vertex of the new edge belongs to a unicyclic component, while the other is
contained in a tree. First, assume that the primary storage position of the new key
belongs to the tree. Again there is no essential difference to the first case considered
here. However, assume that the insertion procedure starts at the cyclic component
that does not possess an empty cell. Note that there exist two possible assignments
of the keys belonging to the edges forming the cycle: “clockwise” and “counter-
clockwise”. During the insertion, we follow the unique path from the starting point
to the cycle, walk once around the cycle and change the orientation of the assign-
ment, and follow the same path that brought us to the cycle back to the starting
point. Further the insertion algorithm continues and places the new key in the tree
component. An exemplary situation is depicted in Figure 1.6

Because of this close relation between the hash algorithm and the corresponding graph,
we can analyse cuckoo hashing by considering bipartite multigraphs. For example, the
probability that Cuckoo hashing works successfully with n keys and table size m equals
the probability that a random bipartite multigraph with m nodes of each type and n edges
has no complex component. Further, structural knowledge of the detailed structure of tree
and unicyclic components provides information about the running time. For instance, the
insertion cost of a key x such that the edge (h1(x), h2(x)) is contained in a tree component
is bounded by the diameter of this tree. A detailed analysis of cuckoo hashing can be
found in Chapters 4 and 7.

1.5.2 Asymmetric cuckoo hashing

A significant feature of the cuckoo hash algorithm described above is the unbalanced load,
because the majority of keys will be usually stored in the first table. This is due to the
fact, that an insertion always starts using h1 and not a randomly selected hash function.
Thus, more keys can be found requiring one step only, if a search operation always probes
using h1 first. Note that this unbalanced load does not influence the probability if the
hash table is constructed successfully in any way.
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Figure 1.4: An evolving cuckoo hash table. We insert the keys a to f sequentially into the
previously empty data structure. Each picture depicts the status after the insertion of
a single key. The lines connect the two storage locations of a key. Thus, they indicate
the values of the hash functions. Arrows symbolise the movement of a key, if it has
been kicked-out during the last insertion. Finally, we try to insert the key g on the
middle position of T1, which causes and endless loop and therefore is impossible.

Due to this observation, it is a straightforward suggestion to increase the size of the
first hash table compared to the second table. We expect that the number of keys stored
in T1 increases as the asymmetry increases, and hence we presume a better performance
of successful search operations. On the other hand, one has to examine the influence of
the asymmetry on the failure probability.

This modification was first mentioned in Pagh and Rodler [2004], but without a further
analysis. A detailed study of the influence of this alteration can be found in Chapters 4,
7, and 8, see also Kutzelnigg [2008].

1.5.3 d-ary cuckoo hashing

A straightforward generalisation of cuckoo hashing was supposed by Fotakis et al. [2003]
(see also Fotakis et al. [2005]). The algorithm uses d tables and d hash functions instead
of only two. As a strong point, this algorithm allows a higher space utilisation than the
standard data structure. For instance, the maximum load factor increases to 91% if d = 3
holds, to 97% for d = 4, and to 99% if d = 5 is satisfied. On the other hand, the cost
of search operations increases as d increases. The original paper considers two slightly
different versions of the algorithm. One might either restrict the access of a hash function
to one table only, similar to the original cuckoo hash algorithm, or grant all hash function
access to all memory cells.

Both variants can be analysed by considering matchings (see, e.g., Diestel [2005]) in
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Figure 1.5: The insertion of a key possessing a primary storage location contained in a
tree component. The first picture displays an exemplary situation immediately before
the insertion of the key j, the second picture shows the situation after the insertion is
completed.

bipartite graphs. The first type of nodes corresponds to the keys, while the second type
corresponds to the memory cells. Now, for each node of first type, we select d nodes of
second type uniformly at random in the allowed range and connect them to the vertex
representing the key. The algorithm succeeds if and only if there exists a matching that
covers all nodes corresponding to keys.

Unfortunately, there doesn’t exist a direct analogon to the cuckoo graph that provides
an easy criterion if the construction of the hash table is possible or not, even for the case
d = 3. Of course, it is possible to consider hypergraphs (see, e.g., Diestel [2005]) where
each hyperedge corresponds to a key. However, it is unclear what components of this
hypergraph are admissible for d-ary cuckoo hashing. For instance, it is straightforward
to construct “bicyclic” components (cf. Andriamampianina and Ravelomanana [2005])
that do not produce conflicts. Some further results about d-ary cuckoo hashing are given
in Czyzowicz et al. [2006], but until now, no exact analysis is known.

1.5.4 Simplified cuckoo hashing

A further simple modification of the standard algorithm is mentioned in Pagh and Rodler
[2004], but again, without further analysis. Instead of using two separate tables, we “glue”
them together and use one table of double size 2m only. Further, both hash functions
address the whole table. This in some sense simplified algorithm is called simplified
cuckoo hashing. As a result of this change, the probability that the first hash function
hits an empty cell increases, hence we expect a better performance for search and insertion
operations. Details will be discussed later, see also Drmota and Kutzelnigg [2008] and
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Figure 1.6: The insertion of a key possessing a primary storage position contained in an
unicyclic component. The situation is displayed immediately before the insertion of
key n starts and after the procedure finally places n in its secondary storage position.
Note that the insertion is not yet complete if that position was previously occupied.

Kutzelnigg [2008].
As mentioned above, a similar suggestion was made in the analysis of d-ary cuckoo

hashing by Fotakis et al. [2003]. However, the authors made this suggestion, because
it simplifies the analysis, but they did not suggest it for practical application, due to
the following problem: Given an occupied table position, we do not know any longer if
this position is the primary or secondary storage position of the key. As a solution, we
must either reevaluate a hash function, or preferably provide additional memory to store
this information. It might be even possible to store this information in the table itself if
the bit-length of a key is smaller than the length of the data type in use. We could for
instance encode the number of the hash function in use in the sign of an entry.

Furthermore, a very clever variant to overcome this problem if only two hash functions
are used is given in Pagh and Rodler [2004]. If we change the possible storage locations
in a table of size 2m for a key x to be h1(x) and (h2(x)−h1(x)) mod 2m, the alternative
location of a key y stored at position i equals (h2(y) − i) mod 2m. For this reason,
we assume that the second suggestion is implemented, and we do not take the cost of
otherwise necessary reevaluations of hash functions into account.

Again, we model the algorithm by using a labelled multigraph, but this time we consider
a non-bipartite graph possessing directed edges. Its labelled nodes represent the memory
cells of the hash table, and each labelled edge represents a key x and connects h1(x)
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to h2(x). Further, we chose the direction of an edge such that it starts at the primary
storage location h1(x). This construction is similar to the bipartite cuckoo graph of the
standard algorithm described above. Once again, it is obviously necessary and sufficient
for a successful construction, that every component of the cuckoo graph has less or equal
edges than nodes. Thus, each connected component of the graph must either bee a tree,
or unicyclic, see Chapter 4.

1.5.5 Cuckoo hashing with a stash

Another drawback of the previously mentioned algorithms based on cuckoo hashing is,
that there exists a small (cf. Chapter 4) but practically relevant probability that the
construction of the data structure fails, due to an endless loop in the insertion procedure.
In this case, the standard solution is to rebuild the complete data structure, which is
computationally very expensive. To overcome this weak point, Kirsch et al. [2008] suggest
the usage of additional memory, the so called stash, to store keys that cannot be placed
in the cuckoo hash table itself. Hereby, this stash is supposed to be a simple array, but
one might also use a further hash table. Their analysis shows, that a small constant sized
amount of additional memory is sufficient to reduce the failure probability dramatically.

Note that this modification has a strong influence on the number of memory cells
accessed during an unsuccessful search, because all elements stored in the stash have to be
inspected. Hence the performance measured in memory accesses decreases significantly
(cf. Chapter 8), even if there is one key in the stash only. However this is an unfair
comparison because of the memory system of modern computers. Since the stash is
frequently accessed it will therefore be hold in the cache, in contrast to a randomly
selected cell of a large table. Thus it is usually much faster to access keys contained in
the stash.

1.5.6 Further variants

Naor et al. [2008] presented a modified version of the algorithm, that is history indepen-
dent. In other words, the state of this data structure is not influenced by the specific
order of the keys that lead to its current contents. This property is very important for
applications where an unintended leak might reveal a point of attack, like cryptographic
algorithms. The main idea of this modification is to give specific rules where the min-
imum key belongs to a tree resp. cycle is stored. Hence the position of all other keys
belonging to the same component is determined.

A further modification of the standard algorithm is a load balancing data structure.
Instead of always using the first hash function as starting point, one could randomly se-
lect the hash function. However, this modification results in increasing costs of successful
search operations, since the number of keys stored in the first table decreases. Further-
more, an unsuccessful search takes two steps in any case, because the search can not be
stopped any longer if the first probe hits an empty cell. Note that the balanced load
does not influence the probability of a successful construction of the hash table, because
it does not have influence on the related cuckoo graph. By mentioning all this reasons,
we do not consider this variant any further.

Dietzfelbinger and Weidling [2007] suggested the usage of tables such that each table
position represents a bucket of capacity d satisfying d ≥ 1. Clearly, this modification
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increases the expected number of keys that can be stored in the table. But again, there
is no direct analogon to the cuckoo graph known that provides an easy criterion if the
construction of the hash table is possible or not, even for the case d = 2.

1.6 Hash functions

In principle, it is not required that keys are numeric, they may be alphanumeric or more
general finite words based on an arbitrary finite alphabet. But it is straightforward (see,
e.g., Cormen et al. [2001]) to transform such keys into a numeric version, thus we consider
numeric keys only.

1.6.1 The division method

The division method is an especially easy approach. We simply use the remainder modulo
the table size,

h(x) = x mod m. (1.1)

In general, it is recommendable to choose m as prime number not to close too an exact
power of two. This kind of hash functions is well suited for a software implementation of
the classical hash algorithms, see Cormen et al. [2001].

1.6.2 The multiplication method

This method is equally approachable than the last one. Given a fixed real number A in
the range 0 < A < 1, we compute the fractional part of the product of A and the key x
and multiply this by the table size. In short, we obtain

h(x) = bm{xA}c. (1.2)

In contrast to the division method, the value of m is not critical. Although each real
number of the interval (0, 1) might be used as multiplicator, some offer better performance
than other. For instance, the number ψ−1 = (

√
5 − 1)/2 works very well (see Knuth

[1998]).

1.6.3 Universal classes of hash functions

A weak point of standard hash algorithms is, that a any fixed hash function is inefficient
for some sets of keys. In practise, the distribution according to which the keys are drawn
is often unknown. Although the hash functions mentioned above behave well on uniform
random input, some pattern in the input might lead to an increased number of collisions.

To overcome this bottleneck, Carter and Wegman [1979] introduced the concept of
universal hashing. Instead of using a fixed hash function, we select a hash function at
random (independent on the set of keys) from a accurately designed set of functions for
each run of the algorithm. Due to this randomisation, the method offers good average
performance on any input.
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Definition 1.1. Let c be a real number greater or equal one. A set of hash functions H
with domain U and range m is said to be c-universal, if for any distinct keys x and y the
relation

|{h ∈ H : h(x) = h(y)}| ≤ c
|H|
m

(1.3)

holds. In particular, a 1-universal class is called universal.

Suppose that a hash function is chosen from a universal family uniformly at random
and independent on the actual keys. Thus, we obtain roughly the same complexity for
hashing with chaining as we used in Section 1.3 for random hash values (see, e.g., Cormen
et al. [2001]).

In particular, Carter and Wegman [1979] introduced the universal class of hash func-
tions, whose members h are constructed as follows. Assume that a key s consists of a
sequence sr−1, sr−2, . . . , s0 of length r of numbers satisfying 0 < si < b. Further, suppose
that f denotes an array of t-bit random integers f [0], f [1], . . . , f [b·r]. Then, we obtain a
hash function, suitable for a table of size 2t by the definition

hf (s) = (f [s0]⊕ f [s0 + s1 + 1]⊕ · · · ⊕ f [s0 + · · ·+ sr−1 + r − 1]) , (1.4)

where ⊕ is the bitwise exclusive or operator. Further, the evaluation of the members
of this class is possible without multiplications. Thus, it is also suitable for hardware
implementation. However, the weak point of the method is that the size of the random
array might be very large especially for strings.

Another class of universal hash functions, that offers quite fast evaluation, can be found
in Dietzfelbinger et al. [1997]. It consists of all the functions

ha(x) =
⌊
(ax mod 2k)/2k−l

⌋
, (1.5)

that map {0, 1, . . . , 2k−1} to {0, 1, . . . , 2l−1}, where l ≤ k holds and a is an odd constant
satisfying 0 < a < 2k.

Several generalisations of the concept of universal hashing like (c, k) independent hash
functions are known in the literature (see, e.g., Siegel [1989]).

Definition 1.2. A family of hash functions H with domain U and range m is called
(c, k)-independent, if for any distinct keys x1, . . . , xk and for all hash values y1, . . . , yk the
relation

|{h ∈ H : h(xi) = yi,∀ i = 1, . . . , k}| ≤ c
|H|
mk

(1.6)

holds.

Clearly, a (c, k)-independent class is (c, l)-independent for all l smaller than k too.
Further, each (c, 2)-independent class is c-universal.

An important example of independent hash functions are polynomial hash functions.
Let U be a finite field and ad, ad−1, . . . , a0 be a sequence of elements of U . Then, we
define the members of the class by

h(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 mod m, (1.7)

where the multiplications and additions are carried out in U , see Dietzfelbinger et al.
[1992] for further details.

14



1.6 Hash functions

1.6.4 Practical hash functions for cuckoo hashing

The original paper of Pagh and Rodler [2004] is based on the usage a universal class
of hash functions introduced by Siegel [1989]. However, this functions exhibit a large
evaluation time (but constant with respect to the table size), hence they are more of
theoretical than of practical interest. Thus, the authors used different hash functions
to obtain numerical data, although it is not clear whether their analysis carries through
for this classes. Further, they noticed, that cuckoo hashing is rather sensitive to the
choice of the hash function. They observed, that the exclusive or conjunction of three
independently chosen members of the class defined by equation (1.5) works well.

Dietzfelbinger and Woelfel [2003] suggest a much more practical family of hash func-
tions, based on polynomial hash functions, to replace Siegel’s universal class. However,
this new family requires still large additional storage space (memory for at least

√
m

numbers of the range 1, 2, . . . ,m), and is a lot more complicate than the simple hash
functions used for attaining numerical data in Pagh and Rodler [2004].

We considered several simple hash functions for the usage in all versions of cuckoo hash-
ing. First, assume that our keys are 32-bit integer numbers. Our numerical experiments
show, that functions of the form

ax+ b mod m, (1.8)

are suitable for table sizes up to approximately 105, where a and b are random 32-bit
numbers, m is a prime number, and the multiplication is performed without taking care
of the overflow. Larger tables require polynomials of higher order, like the function(

ax2 + bx+ c mod u
)

mod m, (1.9)

where u denotes a prime number much larger than m. Interestingly, introducing the
additional calculation mod u in (1.8) did not increase the performance of the function
in our experiments, however it is necessary in (1.9) for large tables. Further, the usage
of 64-bit data types for the calculation of intermediate results did not have significant
influence. We might also use the members of Carter and Wegman’s universal class (1.4),
this functions seem to work well for tables of all sizes. See also Kutzelnigg [2008] and
Chapter 9.

If cuckoo hashing is used for hashing character strings, Tran and Kittitornkun [2007]
suggested the usage of a class of hash functions introduced by Ramakrishna and Zobel
[1997]. The functions are based on a conjunction of shift, addition, and exclusive or
operations. Let SaL denote a bitwise left shift by a positions and SbR a bitwise right shift
by b positions. Further let the key consist of the characters c1, . . . , ck. Starting with a
random initial block h0, we apply the recursive definition

hi+1 = hi ⊕ (SaL(hi) + SbR(hi) + ci+1), (1.10)

till we obtain the hash value hk.
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Chapter 2
Mathematical Preliminaries

2.1 Generating Functions

The analysis of the cuckoo graph presented in this thesis is based on a generating function
approach. Hence, we present here the most important properties for convenience of the
reader. Further details, references, and omitted proofs can e.g. be found in Flajolet and
Sedgewick [2001], Flajolet and Sedgewick [2008], Goulden and Jackson [1983], or Wilf
[1999].

Definition 2.1. An unlabelled combinatorial configuration (S,w) consists of an at most
countable set S and a size function w, such that the size of each element is a non-negative
integer, and the number of elements of any given size is finite.
Further, a combinatorial configuration is called labelled if additionally each object of size
n is linked to a permutation of the numbers 1, 2, . . . , n. That means, each object consists
in some way of n “atoms” and each of it is assigned a unique label in the range 1, 2, . . . , n.

Definition 2.2 (Ordinary generating function). The ordinary generating function of an
unlabelled combinatorial configuration (S,w) is defined as the formal power series

S(x) =
∑
s∈S

xw(s). (2.1)

Further, the ordinary generating function of an infinite series (an)n≥0 of complex numbers
is given by

A(x) =
∑
n≥0

anx
n. (2.2)

The notation [xn]A(x) is henceforth used to refer to the coefficient an.

It is convenient to use generating functions, because basic constructions on combina-
torial configurations can be translated to fundamental operations on the corresponding
generating functions, see, e.g., Flajolet and Sedgewick [2008]. For instance, this includes
the union of disjoint combinatorial structures provided the size of the elements remains
unchanged. A further example is given by the Cartesian product of configurations, if
the size of a pair of objects is defined as sum of the individual sizes. Table 2.1 pro-
vides a survey over the most important constructions admissible for ordinary generating
functions.
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2 Mathematical Preliminaries

sum C = A+B C(x) = A(x) +B(x)
product C = A×B C(x) = A(x)B(x)

sequence C = Seq(A) = {ε}+A+A×A+A×A×A+ . . . C(x) = 1
1−A(x)

compos. C = A(B) C(x) = A(B(x)))

Table 2.1: A basic “dictionary” of constructions useful to unlabelled combinatorial con-
figurations, and their “translation” into ordinary generating functions.

sum C = A+B C(x) = A(x) +B(x)
product C = A ∗B C(x) = A(x)B(x)

sequence C = Seq(A) = {ε}+A+A∗A+A∗A∗A+ . . . C(x) = 1
1−A(x)

cycle C = Cyc(A) = A+ 1
2A∗A+ 1

3A∗A∗A+ . . . C(x) = log 1
1−A(x)

set C = Set(A) = {ε}+A+ 1
2!A∗A+ 1

3!A∗A∗A+ . . . C(x) = exp(A(x))
compos. C = A(B) C(x) = A(B(x))

Table 2.2: A “dictionary” of constructions useful to labelled combinatorial configurations,
and their “translation” into exponential generating functions.

Definition 2.3 (Exponential generating function). The exponential generating function
of a labelled combinatorial configuration (S,w) is defined as the formal power series

S(x) =
∑
s∈S

xw(s)

w(s)!
. (2.3)

Further, the exponential generating function of an infinite series (an)n≥0 of complex
numbers is given by

A(x) =
∑
n≥0

an
xn

n!
. (2.4)

Similar to the ordinary case, there exist likewise translations of operations performed
on labelled structures to the language of exponential generating functions. However,
combining tagged structures might require a relabelling. The product of two configu-
rations A and B is still built using the Cartesian product, but one has to perform all
order-consistent relabellings. Thus a pair (a, b), featuring sizes wA(a) respectively wB(b),
produces

(wA(a)+wB(b)
wA(a)

)
different tagged elements. Table 2.2 provides an overview of com-

binatorial constructions applicable to labelled combinatorial configurations.
In general, we do not strictly distinguish between exponential and ordinary generating

functions, because the particular type is usually unambiguous in the current context.
The following theorem provides a tool that is especially useful if we are faced with the
task to extract coefficients from generating functions that are implicitly obtained trough
functional equations.

Theorem 2.1 (Lagrange Inversion Theorem). Let A(x) =
∑

n≥0 anx
n be a generating

function that satisfies the functional equation A(x) = xφ(A(x)) such that φ(0) 6= 0 holds.
Then the equation

[xn]g(A(x)) =
1
n

[un−1]g′(u)φ(u)n (2.5)

holds for all n ≥ 1.
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2.2 Convergence in Distribution

Within the theory of analysis of algorithms, it is usually of interest to calculate values
of parameters related to the considered algorithm, instead of just counting structures.
For instance, knowledge concerning the size of the tree components of the cuckoo graph
allows us to estimate the construction cost of the hash table (see Chapter 6 resp. 7). Such
information is usually obtained introducing a further variable marking the parameter of
interest, that leads to bivariate or more general multivariate generating functions. Using
this functions, one can usually obtain information on the distribution of the observed
parameter, such as expectation, variance, or even limit laws.

Given an either labelled or unlabelled combinatorial configuration (S,w), we define a
d-dimensional parameter χ as a function mapping the elements of S on a d dimensional
vector of natural numbers and consider the problem of counting all elements s contained
in S that satisfy the relation

w(s) = n, χ(s) = (k1, . . . , kn). (2.6)

Definition 2.4. Let (an,k) be a multi-index sequence of complex numbers, where k
denotes a d dimensional vector of natural numbers. Then the ordinary multivariate
generating function of this sequence is given by

A(x) =
∑
n,k

an,kx
nzk. (2.7)

The exponential multivariate generating function is defined as

A(x) =
∑
n,k

an,k
xn

n!
zk. (2.8)

Note that it is possible to adopt the constructions given in Table 2.1 respectively 2.2 to
this general situation under certain circumstances, depending on the interpretation of the
parameter. More precisely, this is possible if the parameter is “inherited”, cf. Flajolet and
Sedgewick [2008]. That means, the value of the parameter is carried forward unchanged
in case of union operations, and it is attained additively as the sum of the value of the
parameters of all involved objects in case of a Cartesian product.

Moreover, modelling the bipartite cuckoo graph requires at least a “double exponential”
generating function, because the nodes of both types are tagged independently. Nonethe-
less, the constructions given in Table 2.2 are still applicable. Consider for instance the
product of the functions f(x, y) and g(x, y), ∑

n,m≥0

fn,m
xnym

n!m!

 ∑
n,m≥0

gn,m
xnym

n!m!

 =
∑
n,m≥0

xnym

n!m!

n∑
k=0

m∑
l=0

(
n

k

)(
m

l

)
fk,lgn−k,m−l.

(2.9)
Note that the inner double sum of the right hand side of this equation takes all possible
independent order preserving relabellings into account.

2.2 Convergence in Distribution

In this thesis, we assume that the reader is familiar with the theory of probability. Never-
theless, we briefly introduce the concept of weak convergence, that is used in Chapter 6.
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2 Mathematical Preliminaries

Further details, references, and omitted proofs can for instance be found in Drmota and
Soria [1995], Flajolet and Sedgewick [2008], Hwang [1996], Loéve [1977], and Papoulis
and Pillai [2002].

Definition 2.5. Let Fn be a family of distribution functions, such that

lim
n→∞Fn(x) = F (x) (2.10)

holds pointwise for all continuity points x of a distribution function F . Then, we say
that Fn converges weakly to F . Further, let Xn resp. X denote random variables having
distribution functions Fn resp. F . Then, we say that Xn converges in distribution to X.

Definition 2.6. The characteristic function of a random variable X, having distribution
function F , is defined by

φ(r) = E
(
eirX

)
=

∞∫
−∞

eirxdF (x). (2.11)

Further, its moment generating function (also known as Laplace transform) is given by

ψ(r) = E
(
erX
)

=

∞∫
−∞

erxdF (x). (2.12)

The importance of this transformations is based on the fact, that convergence of dis-
tributions is related to the convergence of transforms. In particular, the following results
hold:

Theorem 2.2. Let Xn and X be random variables with characteristic functions φn and
φ. Then, Xn converges in distribution to X if and only if

lim
n→∞φn(r) = φ(r) (2.13)

holds pointwise for each real number r.

Theorem 2.3. Let Xn be a sequence of random variables, and denote the corresponding
moment generating functions by ψn. Assume that these functions exist in an Interval
I = [−a, a], such that a > 0 holds, and that

lim
n→∞ψn(r) = ψ(r) (2.14)

holds pointwise for all r ∈ I. Then, Xn converges in distribution to a random variable X
with characteristic function ψ.
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Chapter 3
Saddle Point Asymptotics

Like a lazy hiker, the path crosses the ridge at a low point;
but unlike the hiker, the best path takes the steepest ascent to the ridge.

[. . . ] The integral will then be concentrated in a small interval.

Greene and Knuth [1982]

3.1 Introduction

A saddle point of a function represents a point that is similar to the inner part of a
riding saddle or like a mountain pass. It can be interpreted as the simplest way through
a range. For an arbitrary surface representing the modulus of an analytic function, the
saddle points are the non vanishing zeros of the derivative of this function.

Given an analytic function with nonnegative coefficients, the saddle point method
enables us to investigate the asymptotic behaviour of the coefficients. Especially, it is
helpful if the function is free of singularities, such that other methods like singularity
analysis of generating functions (see Flajolet and Sedgewick [2008]) can not be applied.

Now, we proceed as follows to calculate an asymptotic approximation of the coefficient
of xn of a function f(x). First, we use Cauchy’s Integral Formula

fn =
1

2πi

∮
f(z)z−(n+1) dz =

1
2π

2π∫
0

f(x0e
iφ)x−n0 e−inφ dφ, (3.1)

(see, e.g., Conway [1978]) and obtain an equation involving a line integral. Next, we
choose the line of integration such that it passes a saddle point, where the function
falls of suddenly on leaving this point. Thus, the saddle point corresponds locally to a
maximum of the function on the chosen path. Since we requested nonnegative coefficients,
the relation |f(x)| ≤ f(|x|) holds. Hence, we concentrate the search for a saddle point on
the real line. It is easy to see, that the derivative of exp(log f(x0)− n log x0) equals zero
if and only if the radius x0 is chosen such that

x0
f ′(x0)
f(x0)

= n (3.2)
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3 Saddle Point Asymptotics

holds. Once this path of integration is defined, the integral is evaluated with help of
Laplace’s method (cf. Flajolet and Sedgewick [2008], Greene and Knuth [1982]). More
precisely, the integral is concentrated on a small interval around the saddle point. We
perform the following steps.

1. Neglecting the tail integrals: Choose α depending on n such that the contribution
to the integral outside this arc is negligible.

∫
α<|φ|<π

f
(
x0e

iφ
)
x−n0 e−inφ dφ = O

 α∫
−α

f
(
x0e

iφ
)
x−n0 e−inφ dφ

 . (3.3)

Clearly, it is required that the saddle point corresponds to the only argument pro-
ducing the maximum modulus on the path of integration. Note that the next two
steps have influence on the choice of α too.

2. Centrally approximating the integrand: Let h(φ) denote log f(x0e
iφ). We use of the

local expansion

f
(
x0e

iφ
)
x−n0 e−inφ = f(x0)eh

′′(φ)φ2+O(h′′′(φ)α3). (3.4)

The angle α is required to be sufficiently small, such that the relation h′′′(φ)α3 → 0
holds uniformly for all φ satisfying |φ| ≤ α as n tends to infinity. Hence, we obtain
the relation

α∫
−α

f
(
x0e

iφ
)
x−n0 e−inφ dφ = f(x0)

α∫
−α

eh
′′(φ)φ2

dφ+ O(1). (3.5)

3. Completing the tails: Finally, we require that α is large enough such that −h′′(φ)α2

tends to infinity, thus the relation

α∫
−α

eh
′′(φ)φ2

dφ =

∞∫
−∞

eh
′′(φ)φ2

dφ+ O(1) (3.6)

holds.

Further results and examples are e.g. given in Drmota [1994], Flajolet and Sedgewick
[2008], Gardy [1995], and Greene and Knuth [1982].

3.2 Stirling’s formula using saddle point method

The aim of this section is a detailed derivation of Stirling’s formula by using the saddle
point method (cf. Flajolet and Sedgewick [2008]) to provide an introductory example of
this powerful technique. Further, we will show how complete asymptotic expansions can
be obtained.
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3.2 Stirling’s formula using saddle point method

Figure 3.1: The modulus of the function ez/z3 close to the origin.

3.2.1 The leading term

We consider the function ez and obtain using Cauchy’s Integral Formula the equation

1
n!

=
1

2πi

∮
ezz−(n+1) dz =

1
2π

π∫
−π

exp
(
x0e

iφ
)
x−n0 e−inφ dφ. (3.7)

The saddle point is determined solving (3.2), and we obtain x0 = n. Hence, we get the
equation

1
n!

=
1

2π
en

nn

π∫
−π

enh(φ)dφ, (3.8)

where h(φ) denotes the function eiφ − 1− iφ. Figure 3.1 shows the surface and the path
passing the saddle point according to n = 3. Note that the rate of ascent increases if n
is increasing.

We set α = n−1/2+ε, where ε denotes a real number satisfying 0 < ε < 1/6. Therefore
nα2 → ∞ and nα3 → 0 hold, according to the heuristic mentioned in the last section.
Furthermore, the modulus of eh(φ) is given by ecosφ−1. We conclude that the contribution
outside the arc defined by α is exponentially small,∣∣∣∣ ∫

α<|φ|≤π
enh(φ)dφ

∣∣∣∣ ≤ 2πe−n(1−cosα) = O(e−Cnα2)
= O (e−Cnε) . (3.9)

Next, we obtain a Taylor expansion of h(φ) near the saddle point. More precisely,
uniformly for all φ in [−α, α], the relation

h(φ) = −φ
2

2
− i

φ∫
0

h′′′(t)
2

(φ− t)2 dt = −φ
2

2
+O(α3) (3.10)
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3 Saddle Point Asymptotics

holds. With help of this expansion, we can rewrite the integral that provides the main
contribution as follows,

α∫
−α

enh(φ)dφ =

α∫
−α

e−
nφ2

2
+O(nα3)dφ =

α∫
−α

e−
nφ2

2
(
1 +O(nα3)

)
dφ. (3.11)

We split up this integral and proceed with an estimate of the summand containing the
big-O term,

∣∣∣∣
α∫

−α
e−

nφ2

2 O(nα3) dφ
∣∣∣∣ = O(nα3)

α∫
−α

e−
nφ2

2 dφ ≤ O(nα3)√
n

∞∫
−∞

e−
ψ2

2 dψ = O (n−1+3ε
)
.

(3.12)
Afterwards, we calculate the remaining integral by extending the range of the integral

to infinity. This step is justified by the fact that the tails of the integral are exponentially
small (cf. Lemma 3.2),

1√
n

∞∫
α
√
n

e−
ψ2

2 dψ =
1√
n

∞∫
0

e−
1
2(α√n+h)2

dh ≤ e−
α2n
2√
n

∞∫
0

e−
h2

2 dh = O (e−Cnε) . (3.13)

Thus we obtain the main contribution

α∫
−α

e−
nφ2

2 dφ =
1√
n

∞∫
−∞

e−
ψ2

2 dψ +O (e−Cnε) =
√

2π√
n

+O (e−Cnε) . (3.14)

Finally, we collect all the results and obtain

1
n!

=
1

2π
en

nn

(√
2π√
n

+O (n−1+3ε
)

+O (e−Cnε)) =
1√
2πn

en

nn

(
1 +O

(
n−

1
2
+3ε
))

.

(3.15)

3.2.2 Further coefficients

A refinement of this method allows us to calculate complete asymptotic expansions. Since
the integral taken outside the arc defined by α is exponentially small, we just have to
revisit (3.11). We proceed with the refined Taylor expansion

nh(φ) = nh

(
ψ√
n

)
= −ψ

2

2
− i

ψ3

6
√
n

+
ψ4

24n
+R4, (3.16)

where the remainder R4 is bounded uniformly for all ψ in
[− α

√
n, α

√
n
]

by

|R4| =
∣∣∣∣
ψ∫

0

e
it√
n

n
3
2 4!

(ψ − t)4
∣∣∣∣ ≤ |ψ|5

n
3
2 5!

= O(nα5
)
. (3.17)
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3.2 Stirling’s formula using saddle point method

Further, we make use of the expansions

e
−i ψ3

6
√
n = 1− i

ψ3

6
√
n
− ψ6

72n
+

ψ3∫
0

e
− it√

n

n
3
2 2

(ψ3 − t)2 = 1− i
ψ3

6
√
n
− ψ6

72n
+O(n3α9

)
(3.18)

and

e
ψ4

24n = 1 +
ψ4

24n
+O(n2α8

)
. (3.19)

Hence we yield

α∫
−α

enh(φ)dφ =
1√
n

α
√
n∫

−α√n

e−
ψ2

2

(
1− 1√

n

iψ3

6
+

1
n

(
ψ4

24
− ψ6

72

)
+O(n3α9

))
dψ. (3.20)

Again, we split up the integral and treat the summands separately. Similar to (3.12) the
bound ∣∣∣∣

α∫
−α

e−
nφ2

2 O(n3α9) dφ
∣∣∣∣ = O (n−2+9ε

)
(3.21)

holds. Finally, we complete the exponentially small tails and calculate the integral

1√
n

∞∫
−∞

e−
ψ2

2

(
1− 1√

n

iψ3

6
+

1
n

(
ψ4

24
− ψ6

72

))
dψ =

√
2π√
n

(
1 +

(
1
8
− 5

24

)
1
n

)
. (3.22)

The evaluation of integrals of the form
∫∞
−∞ e−z2/2zk dz is explained in Lemma 3.1.

Additionally, the error terms caused by the completed tails are estimated in Lemma 3.2.
Further terms of the expansion can be calculated in the same way, and the expansion

1
n!

=
1√
2πn

en

nn

(
1− 1

12n
+

1
288n2

+
139

51840n3
− 571

2488320n4
+O

(
1
n5

))
, (3.23)

can be obtained.

Lemma 3.1. Let l be a natural number.
∞∫

−∞
e−

z2

2 zl dz =

{
1 · 3 · 5 . . . (l − 1)

√
2π . . . l even

0 . . . l odd
(3.24)

Proof. Integration by parts shows us that the equation

∞∫
−∞

e−
z2

2 zl dz =
e−

z2

2 zl+1

l + 1

∣∣∣∣∞
−∞

+
1

l + 1

∞∫
−∞

e−
z2

2 zl+2 dz

holds. We already know from Gauß that the integral
∫∞
−∞ e−z2/2 dz equals

√
2π and

obtain the result for the even case by induction. Now, assume l is odd. This implies that
e−z2/2zl is an odd function. Further, the absolute value of the integral is bounded and
therefore zero.
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A different proof can be obtained by using the equation

∑
l≥0

xl

l!

∞∫
−∞

e−
z2

2 zl dz =

∞∫
−∞

e−
z2

2
+zx−x2

2
+x2

2 dz = e
x2

2

√
2π =

√
2π

∞∑
l=0

x2l

l!2l
. (3.25)

Lemma 3.2. Let l be a natural number, w a real number greater than zero, and c be a
constant in (0, 1/2). Then, the bound

∞∫
w

e−
z2

2 zl dz = O
(
e−cw

2
)

(3.26)

holds.

Proof. We perform the substitution z = h+ w. Thus, we obtain the equation
∞∫
w

e−
z2

2 zl dz =

∞∫
0

(h+ w)le−
(h+w)2

2 dh ≤ e−
w2

2

l∑
i=0

(
l

i

)
wl−i

∞∫
0

hie−
h2

2 dh. (3.27)

Since all the integrals are constant, we obtain the bound pl(w)e−w2/2, where pl(w) denotes
a polynomial of degree l with real coefficients. Clearly, pl(w) is in O(eεw

2
) for each

arbitrarily small but fixed and positive ε. Hence, the claimed bound holds.

3.3 Asymptotic expansions

In Chapter 4, we derive the generating function of the cuckoo graph and subsequently
apply a saddle point method. This section provides the required method to extract an
asymptotic expansion of the k-th coefficient fk = [xk]f(x) of a suitable power series
f(x) =

∑∞
k=0 fkx

k.

Theorem 3.1. Let f(x) and g(x) be analytic functions with a positive radius of con-
vergence R larger than x0 as defined below, and let m = ak hold for a positive constant
a. Furthermore, let all coefficients of f(x) and g(x) be non negative and assume that
the relations f(0) 6= 0 and gcd{m|[xm]f(x) > 0} = 1 hold. Then, the asymptotic series
expansion

[xm]g(x)f(x)k =
g(x0)f(x0)k

xm0
√

2πkκ2

(
1 +

H

24κ3
2

1
k

+O
(

1
k2

))
, (3.28)

is valid, where x0 is uniquely defined by

m

k
=
x0f

′(x0)
f(x0)

. (3.29)

Generally, let the cummulants κi and κi be

κi =
[
∂i

∂ui
log f(x0e

u)
]
u=0

, κi =
[
∂i

∂ui
log g(x0e

u)
]
u=0

. (3.30)

H can be expressed by

12κ2κ3κ1 + 3κ2κ4 − 12κ2
2κ

2
1 − 12κ2

2κ2 − 5κ2
3. (3.31)
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3.3 Asymptotic expansions

The leading term of this asymptotic expansion is already given in Gardy [1995], and the
calculation of further terms is suggested as possible extension by the author. A detailed
asymptotic expansion for g = 1 can be found in Drmota [1994].

Further coefficients can be calculated analogously, but the complexity of the explicit
calculation increases for each further term. Here, we content ourselves with the result
stated above, since it is adequate for the analysis of simplified cuckoo hashing.

In general, it is not necessary that the functions f and g fulfil all the strong technical
conditions of the theorem, as long as the unique existence of the saddle point is granted.
However this assumptions are highly natural if gfk is a generating function counting some
combinatorial objects. Further, one has to adjust the calculations, if the maximal value
is attained more than once on the line of integration.

Proof. We start showing that the saddle point x0 on the real line is unique if it exists.
It suffices to check that [xf ′(x)/f(x)]x=0 = 0 and that the function xf ′(x)/f(x) is con-
tinuous and increasing for real valued x. Since we required nonnegative coefficients, the
relation |f(x)| ≤ f(|x|) holds. Thus it can be shown that f is logarithmically convex (see
Conway [1978]). This implies that (logf(x))′ = f ′(x)/f(x) is increasing.

Further, x0 is the unique maximum of f on the line of integration. This is due to the
fact that the maximum is attained only if all coefficients of f are aligned in the same
phase. Hence it occurs as a consequence of the aperiodicity (gcd{m|[xm]f(x) > 0} = 1)
on the positive real line only.

Again, we use Cauchy’s Formula as starting point:

[xm]g(x)f(x)k =
1

2πi

∫
|x|=x0

g(x)f(x)k

xm+1
dx =

1
2πi

∫
|x|=x0

ek log f(x)−(m+1) log x+log g(x) dx.

(3.32)
We perform the substitution x = x0e

is, and obtain

[xm]g(x)f(x)k =
1

2πxm0

π∫
−π

ek log f(x0eis)−mis+log g(x0eis) ds. (3.33)

The contribution outside a proper chosen interval [−α, α] is exponentially small com-
pared to the integral taken along this range. Similar to previous calculations, we choose
α such that kα2 → ∞ and kα3 → 0 hold as k turns to infinity. To achieve this, we set
α = k−1/2+ε, where ε denotes a positive number satisfying ε < 1/6. Hence we obtain the
equation

ek log f(x0eis)−mis = f(x0)ke−kκ2
s2

2
+O(kα3), (3.34)

uniformly for all s in [−α, α]. Thereby, the bound implied by the big-O term depends
on the maximum of the third derivative of log f(x0e

is) with respect to s taken over the
interval [−α, α]. Since x0 is the unique maximum of the modulus of f along the path
of integration, it is clear that the modulus of the function outside the range [−α, α] is
bounded by the modulus taken on the boundary points of this interval, at least for suffi-
ciently large k. Using the Taylor expansion derived above, we thus obtain the estimation∣∣∣∣ 1

2πxm0

∫
α<|s|≤π

g(x0e
is)ek log f(x0eis)−mis ds

∣∣∣∣ ≤ g(x0)f(x0)k

xm0
O
(
e−ckα

2
)
, (3.35)
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3 Saddle Point Asymptotics

where c denotes a positive constant.
Next, we consider the remaining integral and substitute u =

√
ks. In what follows, we

make use of the Taylor expansions listed below:

k log f
(
x0e

i u√
k

)
−mi

u√
k

= k log f(x0)− κ2u
2

2
+
iκ3u

3

6
√
k

+
κ4u

4

24k
+O (kα5

)
, (3.36)

log g
(
x0e

i u√
k

)
= log g(x0) +

iκ1u√
k
− κ2u

2

2k
+O (α3

)
, (3.37)

e
− iκ3u

3

6
√
k = 1− iκ3u

3

6
√
k
− κ2

3u
6

72k
+O (k3α9

)
(3.38)

e
κ4u

4

24k = 1 +
κ4u

4

24k
+O (k2α8

)
, (3.39)

e
iκ1u√
k = 1 +

iκ1u√
k
− κ2

1u
2

2k
+O (α3

)
, (3.40)

e−
κ2u

2

2k = 1− κ2u
2

2k
+O (α4

)
. (3.41)

Thus, the integral can be rewritten as

1
2πxm0

α∫
−α

ek log f(x0eis)−mis−log g(x0eis) ds

=
g(x0)f(x0)k

2πxm0
√
k

α
√
k∫

−α√k

e−
κ2u

2

2

(
1− iκ3u

3

6
√
k

+
iκ1u√
k

+
κ3κ1u

4

6k
− κ2

3u
6

72k

+
κ4u

4

24k
− κ2

1u
2

2k
− κ2u

2

2k
+O (k3α9

))
du. (3.42)

First, we focus the analysis on the part of the integral that contains the error term. It is
easy to see, that the modulus of this integral is bounded by

∣∣∣∣
α
√
k∫

−α√k

e−
κ2u

2

2 O (k3α9
)
du

∣∣∣∣ ≤ O (k3α9
) ∞∫
−∞

e−
κ2u

2

2 du = O (k3α9
)

= O
(
k−

3
2
+9ε
)
. (3.43)

Second, we complete the tails, what causes exponentially small error terms (see also
Lemma 3.2). This allows us to compute the integrals by using Lemma 3.1,

∞∫
−∞

e−
κ2u

2

2

(
1− iκ3u

3

6
√
k

+
iκ1u√
k

+
κ3κ1u

4

6k
− κ2

3u
6

72k
+
κ4u

4

24k
− κ2

1u
2

2k
− κ2u

2

2k

)
du

=
√

2π√
κ2

(
1 +

κ3κ1

2kκ2
2

− 5κ2
3

24kκ3
2

+
3κ4

24kκ2
2

− κ2
1

2kκ2
− κ2

2kκ2

)
. (3.44)

Finally, we collect all the results and obtain the claimed expansion. Obviously, we can
easily apply the known proof technique to calculate further terms. Thus, it should be
clear, that the error term in (3.28) is of order 1/k2.
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3.4 Asymptotic expansions of bivariate functions

3.4 Asymptotic expansions of bivariate functions

The aim of this section is the development of a bivariate version of the theorem established
in the last section. This result will be applied analysing the bipartite cuckoo graph in
Chapter 4.

Theorem 3.2. Let f(x, y) and g(x, y) be analytic functions in a ball around (x, y) =
(0, 0), that contains (x0, y0) as defined below and let m1/k and m2/k be constants greater
than zero. Further, let all coefficients [xm1ym2 ]f(x, y) and [xm1ym2 ]g(x, y) be non nega-
tive, and such that almost all indices (m1,m2) can be represented as a finite linear com-
bination of the set {(m1,m2)|[xm1ym2 ]f(x, y) > 0} with positive integers as coefficients.
Then the asymptotic series expansion

[xm1ym2 ]g(x, y)f(x, y)k =
g(x0, y0)f(x0, y0)k

2πxm1
0 ym2

0 k
√

∆

(
1 +

H

24∆3

1
k

+O
(

1
k2

))
, (3.45)

is valid, where x0 and y0 are uniquely defined by

m1

k
=

x0

f(x0, y0)

[
∂

∂x
f(x, y)

]
(x0,y0)

,
m2

k
=

y0

f(x0, y0)

[
∂

∂y
f(x, y)

]
(x0,y0)

. (3.46)

Generally, let the cummulants κij and κij be

κij =
[
∂i

∂ui
∂j

∂vj
log f(x0e

u, y0e
v)
]

(0,0)

, κij =
[
∂i

∂ui
∂j

∂vj
log g(x0e

u, y0e
v)
]

(0,0)

. (3.47)

Further let ∆ = κ20κ02 − κ2
11, then H can be expressed by

H = α+ β + β̂ + γκ10 + γ̂κ01 + δκ10κ01 + ηκ2
10 + η̂κ2

01 + 4ηκ20 + 4η̂κ02 + 4δκ11, (3.48)

where

α = 54κ21κ11κ12κ20κ02 + 6κ22κ20κ02κ
2
11 − 12κ22κ

4
11 + 4κ03κ

3
11κ30

+ 36κ21κ
3
11κ12 + 6κ22κ

2
20κ

2
02 + 6κ03κ11κ30κ20κ02, (3.49)

β = −5κ3
02κ

2
30 + 30κ2

02κ30κ11κ21 − 24κ02κ30κ12κ
2
11 − 6κ2

02κ30κ12κ20

− 12κ11κ
2
02κ31κ20 − 36κ02κ

2
21κ

2
11 − 9κ2

02κ
2
21κ20 + 3κ3

02κ40κ20

− 3κ2
02κ40κ

2
11 + 12κ3

11κ02κ31, (3.50)

γ = 12∆
(
κ2

02κ30 − κ11κ20κ03 − 3κ21κ11κ02 + κ12κ
2
11 + κ12(κ02κ20 + κ2

11)
)
, (3.51)

δ = 24∆(κ11κ20κ02 − κ3
11), (3.52)

η = 12∆(κ02κ
2
11 − κ2

02κ20), (3.53)

and ˆ indicates to replace all functions of type κij by κji.

This theorem generalises a result of Good [1957], where g(x, y) equals 1.

Proof. The technical conditions on f(x0e
is, y0e

it) ensure that the function’s maximal
modulus is uniquely attained if s = t = 0 modulo 2π holds. Further, it can be seen that
the saddle point (x0, y0) is unique, because the cummulants of second order are strictly
positive. See Good [1957] for details.
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3 Saddle Point Asymptotics

As previously shown, we start by applying Cauchy’s Formula:

[xm1ym2 ]g(x, y)f(x, y)k = − 1
4π2

∫
|x|=x0

∫
|y|=y0

g(x, y)f(x, y)k

xm1+1ym2+1
dy dx

= − 1
4π2

∫
|x|=x0

∫
|y|=y0

ek log f(x,y)−(m1+1) log x−(m2+1) log y−log g(x,y) dx dy. (3.54)

Further, we substitute x = x0e
is and y = y0e

it, and get

[xm1ym2 ]g(x, y)f(x, y)k

=
1

4π2xm1
0 ym2

0

π∫
−π

π∫
−π

ek log f(x0eis,y0eit)−m1is−m2it+log g(x0eis,y0eit) dt ds. (3.55)

The contribution of the integral taken over the range I =
(
[−π, π]×[−π, π]

)\([−α, α]×
[−α, α]

)
is exponentially small compared to the remaining integral. To prove this, we set

α = k−1/2+ε, where ε denotes a real number satisfying 0 < ε < 1/6. Furthermore, the
Taylor expansion

ek log f(x0eis,y0eit)−m1is−m2it = f
(
x0e

is, y0e
it
)k
e−

k
2 (κ20s2+2κ11st+κ02t2)+O

(
k−

1
2+3ε

)
(3.56)

can be obtained. Similar to the univariate case, the modulus of f
(
x0e

is, y0e
it
)

outside the
range [−α, α]× [−α, α] is bounded by the maximum modulus attained on the boundary
of this square, since x0, y0 is the unique maximum of f . It is easy to see, that the function
exp

(−κ20
2 s2−κ11st−κ02

2 t2
)

attains its maximum along the boundary if (s, t) =
(−κ11

κ20
α, α

)
resp. (s, t) =

(
α,−κ11

κ02
α
)

holds. Hence, there exists a positive constant c such that the
bound exp(−ckα2) holds. Consequently, we derive the inequality∣∣∣∣ ∫∫

I

g
(
x0e

is, y0e
it
)
ek log f(x0eis,y0eit)−m1is−m2it dt ds

∣∣∣∣ ≤ 4π2g(x0, y0)f(x0, y0)ke−ck
2ε
,

(3.57)
which proves the claimed property.

Next, we substitute u =
√
ks and v =

√
kt and calculate Taylor expansions of the

functions log f and log g. More precisely, we obtain the expansions

k log f
(
x0e

i u√
k , y0e

i v√
k

)
−m1i

u√
k
−m2i

v√
k

= k log f(x0, y0)

− 1
2
(
κ20u

2 + 2κ11uv + κ02v
2
)− i

6
√
k

(
κ30u

3 + 3κ21u
2v + 3κ12uv

2 + κ03v
3
)

+
1

24k
(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv
3 + κ04v

4
)

+O (kα5
)
, (3.58)

and

log g
(
x0e

i u√
k , y0e

i v√
k
)
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3.4 Asymptotic expansions of bivariate functions

= log g(x0, y0) +
i√
k

(κ10u+ κ01v)− 1
2k
(
κ20u

2 + 2κ11uv + κ02v
2
)

+O (α3
)

(3.59)

in the neighbourhood of (x0, y0). The linear terms vanish due to the choice of the saddle
point. Further, we require Taylor expansions of exp(S(u, v)) for all summands S(u, v) of
(3.58) and (3.59) depending on k:

exp
(
−i 1

6
√
k

(
κ30u

3 + 3κ21u
2v + 3κ12uv

2 + κ03v
3
))

= 1− i

6
√
k

(
κ30u

3 + 3κ21u
2v + 3κ12uv

2 + κ03v
3
)

− 1
72k

(
κ30u

3 + 3κ21u
2v + 3κ12uv

2 + κ03v
3
)2 +O (k3α9

)
, (3.60)

exp
(

1
24k

(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv
3 + κ04v

4
))

= 1 +
1

24k
(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv
3 + κ04v

4
)

+O (k2α8
)
, (3.61)

exp
(

i√
k

(κ10u+ κ01v)
)

= 1 +
i√
k

(κ10u+ κ01v)− 1
2k

(κ10u+ κ01v)2 +O(α3), (3.62)

exp
(
− 1

2k
(
κ20u

2 + 2κ11uv + κ02v
2
))

= 1− 1
2k
(
κ20u

2 + 2κ11uv + κ02v
2
)

+O(α4).

(3.63)
By using these expansions, we can rewrite the remaining integral in the following way:

1
4π2xm1

0 ym2
0

α∫
−α

α∫
−α

g
(
x0e

is, y0e
it
)
ek log f(x0eis,y0eit)−m1is−m2itdt ds

=
g(x0, y0)f(x0, y0)k

4kπ2xm1
0 ym2

0

α
√
k∫

−α√k

α
√
k∫

−α√k

e−
1
2(κ20u2+2κ11uv+κ02v2)

×
(

1 − i

6
√
k

(
κ30u

3 + 3κ21u
2v + 3κ12uv

2 + κ03v
3
)

+
i√
k

(κ10u+ κ01v)− 1
72k

(
κ30u

3 + 3κ21u
2v + 3κ12uv

2 + κ03v
3
)2

+
1

24k
(
κ40u

4 + 4κ31u
3v + 6κ22u

2v2 + 4κ13uv
3 + κ04v

4
)

− 1
2k

(κ10u+ κ01v)2 − 1
2k
(
κ20u

2 + 2κ11uv + κ02v
2
)

+
1
6k
(
κ30u

3 + 3κ21u
2v + 3κ12uv

2 + κ03v
3
)

(κ10u+ κ01v) +O (α9k3
))

dv du.

(3.64)

Assume without loss of generality that κ20 is greater than or equal κ02. Now, we
substitute u =

√
κ02/∆ a and v = −κ11/

√
κ02∆ a + b/

√
κ02, where ∆ denotes the term
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3 Saddle Point Asymptotics

κ20κ02 − κ2
11. Starting from this definition, the equation

α
√
k∫

−α√k

α
√
k∫

−α√k

e−
1
2(κ20u2+2κ11uv+κ02v2)dv du =

1√
∆

µ∫
−µ

ν(a)∫
−ν(a)

e−
a2+b2

2 db da (3.65)

holds, where the bounds µ and ν(a) are given by α
√
k∆/κ02 and α

√
kκ02 + aκ11/

√
∆.

Note that for all a satisfying −µ ≤ a ≤ µ, the inequality ν(a) ≥ νmin = α
√
k(
√
κ02 −

κ11/
√
κ02) is valid. Further, the relation κ20 ≥ κ02 implies that

√
κ02 − κ11/

√
κ02 is

greater than zero. Thus we can complete the tails of integrals depending on b by using
Lemma 3.2 as follows:

∞∫
ν(a)

e−
b2

2 bl db ≤
∞∫

νmin

e−
b2

2 bl db = O
(
e−ck

2ε
)
. (3.66)

We continue with an estimation of the part of (3.64) containing the error term.

∣∣∣∣
α
√
k∫

−α√k

α
√
k∫

−α√k

e−
1
2(κ20u2+2κ11uv−κ02v2)O (k3α9

)
dv du

∣∣∣∣
≤ O (k3α9

)
√

∆

µ∫
−µ

ν(a)∫
−ν(a)

e−
a2+b2

2 db da ≤ O (k3α9
) ∞∫
−∞

∞∫
−∞

e−
a2+b2

2 db da = O
(
k−

3
2
+9ε
)
.

(3.67)

Furthermore, we introduce the simplified notation

I(p, q) =

µ∫
−µ

ν(a)∫
−ν(a)

e−
a2+b2

2 apbq db da. (3.68)

Obviously, all terms of the form apbq where at least one exponent is odd lead to an
integral of size zero, once the tails are completed. Thus, we omit them in the following
calculation. The substitution transforms the integral of (3.64) to

I(0, 0)− κ2
03

I(6, 0)
72κ3

02

+
(
κ04 + 4κ03κ01

)I(4, 0)
24κ02

− (κ02 + κ2
01

)I(2, 0)
2κ02

+
(
κ6

11κ
2
03 + 6κ4

11κ03κ
2
02κ21 − 2κ3

11κ03κ
3
02κ30 − 6κ5

11κ03κ02κ12 − 18κ3
11κ12κ

3
02κ21

+ 9κ2
12κ

4
11κ

2
02 + 6κ2

11κ12κ
4
02κ30 + 9κ2

21κ
2
11κ

4
02 − 6κ5

02κ11κ21κ30 + κ6
02κ

2
30

) I(0, 6)
72κ3

02∆3

− (
5κ4

11κ
2
03 − 20κ3

11κ03κ02κ12 − 2κ11κ03κ
3
02κ30 + 12κ2

11κ03κ
2
02κ21

+ 18κ2
12κ

2
11κ

2
02 + 2κ12κ

4
02κ30 − 18κ12κ

3
02κ21κ11 + 3κ2

21κ
4
02

) I(2, 4)
24κ3

02∆2

− (
4κ3

11κ02κ03κ10 g + 12κ3
11κ02κ12κ01 + 4κ3

11κ02κ13 − 12κ2
11κ

2
02κ21κ01

− 6κ2
11κ

2
02κ22 − 12κ2

11κ
2
02κ12κ10 − κ4

02κ10 − 4κ4
02κ30κ10

+ 12κ11κ
3
02κ21κ10 + 4κ11κ

3
02κ30κ01 + 4κ11κ

3
02κ31 − κ4

11κ04 − 4κ4
11κ03κ01

) I(0, 4)
24κ3

02∆2
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+
(
3κ2

02κ
2
12 + 2κ2

02κ03κ21 − 10κ11κ03κ12κ02 + 5κ2
11κ

2
03

)I(4, 2)
24∆

+
(
2κ2

02κ21κ01 + κ2
02κ22 + 2κ2

02κ12κ10 − 2κ11κ02κ03κ10 − 6κ11κ02κ12κ01

− 2κ11κ02κ13 + κ2
11κ04 + 4κ2

11κ03κ01

)I(2, 2)
4κ2

02∆

− (
κ2

02κ20 + κ2
02κ

2
10 + κ2

11κ02 + κ2
11κ

2
01 − 2κ11κ02κ01κ10 − 2κ11κ02κ11

)I(0, 2)
2κ02∆

. (3.69)

Finally, the completion of the tails according to (3.66) and the calculation of the integrals
with help of Lemma 3.1 completes the proof.
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Chapter 4
Sparse random graphs

4.1 Introduction

in the late sixties of the last century, the theory of random graphs was developed by Erdős
and Rényi. Most commonly studied in the literature are the G(n, p) and the G(n,M)
model. The first consists of all simple graphs1 possessing n vertices in which each of the(
n
2

)
edges is chosen independently with probability p. In contrast, the G(n,M) model

selects a member of the set of all simple graphs consisting of n nodes and M edges, such
that each member is chosen with the same probability. Despite this different definition,
this models are closely related. A lot of analysis has been done on this topic, see, e.g.,
Bollobás [2001] or Janson et al. [2000] for further information.

In this thesis, we consider generalisations of the G(n,M) model. More precisely, we
admit the occurrence of multiple edges and loops. Furthermore, we consider a similar
model of bipartite random graphs. Using this models, we obtain results to analyse the
success rate of cuckoo hashing.

4.2 Random graphs and simplified cuckoo hashing

In Chapter 1, we introduced the concept of the cuckoo graph and observed that simplified
cuckoo hashing is successful if and only if the corresponding multigraph does not possess
a complex component. Thus we are interested in the probability, that a graph consisting
of 2m labelled nodes and n labelled edges consists of tree and unicyclic components only.
To insert an edge, we generate an ordered pair of independent uniformly at random
selected nodes 〈x, y〉 and add the edge directed from x to y. This model is similar to
the multigraph process in Janson et al. [1993], except that we introduced edge labels and
directions instead of compensation factors. With help of a generating function approach,
we obtain the following result.

Theorem 4.1. Suppose that ε ∈ (0, 1) is fixed. Then the probability that a simplified
cuckoo hash of n = b(1− ε)mc data points into a table of size 2m succeeds, (that is, the

1A graph is called simple, if it does not possess multiple edges nor self-loops. Non-simple graphs are
also called multigraphs, cf. Diestel [2005]
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corresponding cuckoo graph contains no complex component,) is equal to

1− (5− 2ε)(1− ε)2

48ε3
1
m

+O
(

1
m2

)
. (4.1)

This result is given in Drmota and Kutzelnigg [2008] and Kutzelnigg [2008], together
with a sketch of the proof.

Proof of Theorem 4.1

First, we count the number of all multigraphs, regardless if they contain complex compo-
nents or not. Let G2m,n denote the set of all node and edge labelled directed multigraphs
(V,E) with |V | = 2m and |E| = n. Obviously, there are

(
2m
2

)
ways to chose an undirected

edge connecting two different nodes and two possible directions for each of this edges.
Additionally there exist 2m different possibilities to add slings. Each of the edges might
be chosen multiple times. Thus, the equation

#G2m,n =
[
vn

n!

]
(ev)2m

(
e2v
)(2m

2 ) = (4m2)n (4.2)

holds.
Further, let G◦2m,n be the graph class without complex components and let

g◦(x, v) =
∑
m,n

#G◦2m,n
x2m

(2m)!
vn

n!
. (4.3)

Equation (4.3) denotes the corresponding double exponential bivariate generating func-
tion. Our next goal is to describe this function. For this purpose, we start considering
tree components. Since the number of edges of a tree equals the number of nodes minus
one, we can concentrate on counting nodes. Furthermore, we don’t have to worry about
edge orientations because there exist exactly 2k−1 possible ways to introduce directions
in an undirected tree possessing k nodes. Thus, we are interested in the generating func-
tion t̃(x) of unrooted (vertex) labelled trees, because they model a tree component of the
cuckoo graph. This generating function is strongly related to the generating function of
rooted trees t(x) that satisfies the functional equation (cf. Flajolet and Sedgewick [2008])

t(x) = xet(x). (4.4)

We obtain each rooted tree whose root is labelled by one if we take all unrooted trees
and declare the node with label one to be root. Further, all other rooted trees can be
constructed from a pair T1, T2 of rooted trees as follows. One of this trees, say T2, contains
the node with label one and we simply add an edge connecting the roots of these trees.
Now we declare the root of T1 to be the root of the whole tree. Since the last step
produces each tree with a root not labelled by one exactly twice, we obtain the equation
(cf. Flajolet et al. [1989])

t̃(x) = t(x)− 1
2
t(x)2, (4.5)

counting all (vertex) labelled unrooted trees.
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4.2 Random graphs and simplified cuckoo hashing

Next, we consider components containing exactly one cycle. Hereby, we do not care
for the orientation of edges, that means we do not require a directed cycle. Such a
component consists of cyclic connected nodes, that can be considered to generate roots
of rooted trees. Thus we obtain the generating function

t(x)k

2k
, (4.6)

for a component possessing a cycle of length k. If k equals one, the cycle is just a sling
and hence there exists one edge whose orientation is unchangeable which is compensated
by a factor 1/2. Further, the case k equals two corresponds to a double edge. In the
latter case, the interchange of the labels assigned to the repeated edge does not change
the graph, what is compensated with a factor 1/2. An additional factor 1/2 arises, since
every graph is produced twice. Similarly, the product is divided by 2k to account for cyclic
order and change of orientation if k is greater than two. Consequently the generating
function of an unicyclic component is given by

∑
k≥1

t(x)k

2k
=

1
2

log
1

1− t(x)
, (4.7)

see also Janson et al. [1993].
Using this intermediate results, we obtain the following result.

Lemma 4.1. The generating function g◦(x, v) is given by

g◦(x, v) =
e

1
2v
t̃(2xv)√

1− t(2xv)
. (4.8)

Proof. We introduce the variable v that counts the number of edges and introduce edge
orientations. Starting from (4.5) resp. (4.7), we obtain the bivariate generating functions
1
2v t̃(2xv) and 1

2 log 1
1−t(2xv) . Finally the function g◦(x, v) is obtained by a set composition.

It is easy to see, that the insertion of a new edge reduces the number of tree compo-
nents by one, conditioned that no complex component exists after the insertion. Thus, a
graph without complex component that possesses 2m nodes and n edges, contains exactly
2m − n tree components. Using this fact and Cauchy’s Formula, we obtain the integral
representation

#G◦2m,n =
[
x2mvn

(2m)!n!

]
g◦(x, v) =

[
x2m

(2m)!

]
n! t̃(2x)2m−n

(2m− n)! 22m−n√1− t(2x)

= [x2m]
2nn!(2m)! t̃(x)2m−n

(2m− n)!
√

1− t(x)
=

2nn!(2m)!
(2m− n)!

∮
t̃(x)2m−n√

1− t(x)
dx

xm+1
. (4.9)

This integral can be asymptotically evaluated with help of the saddle point method. To
do so, we consider an infinite sequence of hash tables. We define the ratio

ε′ = 1− n

m
= 1− b(1− ε)mc

m
. (4.10)
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Starting with a table size 2m and n = (1− ε′)m keys, we increase both parameters such
that the quotient of table size and number of keys remains constant. For instance, we
may consider the sequence (m, (1− ε′)m), (2m, 2(1− ε′)m), (3m, 3(1− ε′)m), . . . of pairs
of parameters and the corresponding hash tables.

Obviously, all technical conditions of Theorem 3.1 are fulfilled. Thus we can apply it
by setting

f(x) → t̃(x), g(x) → 1√
1− t(x)

, k → 2m− n = m(1 + ε′), and m→ 2m.

The calculation of the saddle point requires knowledge of the first derivative of t̃(x), that
itself involves t′(x). This derivatives can be obtained by implicit differentiation. Hence,

t′(x) = et(x) + xet(x)t′(x) =
et(x)

1− t(x)
, (4.11)

and
t̃′(x) = t′(x)− t(x)t′(x) = et(x) =

t(x)
x
. (4.12)

Further, the saddle point x0 is obtained using

2m
2m− n

= x0
t̃′(x0)
t̃(x0)

=
t(x0)

t(x0)− 1
2 t(x0)2

. (4.13)

Thus we get the solution

t(x0) = 1− ε′ resp. x0 = (1− ε′)e−(1−ε′). (4.14)

Additionally, we conclude that

t̃(x0) = t(x0)− 1
2
t(x0)2 =

1
2

(1− ε′2) (4.15)

holds. Similarly, we calculate the cummulants κ2, κ3, κ1, and κ2. Consequently, we
obtain the equation

κ2 =
[
d2

dφ2
log t̃

(
x0e

φ
)]

φ=0

=

[
d

dφ

t
(
x0e

φ
)

t̃ (x0eφ)

]
φ=0

=
t′(x0)t̃(x0)− t(x0)t̃′(x0)

t̃(x0)2
x0

=
t(x0)t̃(x0)− t(x0)2(1− t(x0))

t̃(x0)2(1− t(x0))
=

t(x0)

2(1− t(x0))
(
1− 1

2 t(x0)
)2 =

2(1− ε′)
ε′(1 + ε′)2

, (4.16)

and likewise the results

κ3 = 2
2ε′3 − 5ε′2 + 2ε′ + 1

(ε′ + 1)3ε′3
, κ1 =

1− ε′

2ε′2
, and κ2 =

(1− ε′) (2− ε′)
2ε′4

. (4.17)

Using these intermediate results, we obtain that the leading term of the asymptotic
expansion of the integral in (4.9) equals

t̃(x0)m(1+ε′)√
1− t(x0)x2m

0

√
2πm(1 + ε′)κ2

=
(1 + ε′)m(1+ε′)e2m(1−ε′)

(1− ε′)m(1−ε′)2m(1+ε′)

√
1 + ε′√

4πm(1− ε′)
, (4.18)
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4.3 Bipartite random graphs and standard cuckoo hashing

and the next term of the expansion is given by

12κ2κ3κ1 + 3κ2κ4 − 12κ2
2κ

2
1 − 12κ2

2κ2 − 5κ2
3

24κ3
2m(1 + ε′)

=
5− 12ε′ + 4ε′2 + 12ε3 − ε′4

48ε′3(ε′ − 1)m
. (4.19)

Further, we calculate an asymptotic expansion of the factor preceding the integral apply-
ing Stirling’s formula (3.23),

2nn!(2m)!
(2m− n)!

=
2nnn(2m)2m

(2m− n)2m−ne2n

√
4πnm√

2m− n

(
1 +

1
12n

+
1

24m
− 1

12(2m− n)
+O

(
1
m2

))
=

2m(3−ε′)m2m(1−ε′)(1− ε′)m(1−ε′)

(1 + ε′)m(1+ε′)e2m(1−ε′)

√
4πm(1− ε′)√

1 + ε′

(
1 +

1 + 4ε′ − ε′2

24m(1− ε′2)
+O

(
1
m2

))
.

(4.20)

Combining these results, we get the desired asymptotic expansion,

#G◦2m,m(1−ε′) = (2m)2m(1−ε′)
(

1− (5− 2ε′)(1− ε′)2

48ε′3
1
m

+O
(

1
m2

))
. (4.21)

Thus, the probability that a randomly selected graph does not contain a complex com-
ponent equals

#G◦2m,m(1−ε′)
#G2m,m(1−ε′)

= 1− (5− 2ε′)(1− ε′)2

48ε′3
1
m

+O
(

1
m2

)
. (4.22)

Since

ε′ = 1− bm(1− ε)c
m

= 1− m(1− ε)− {m(1− ε)}
m

= ε+O
(

1
m

)
(4.23)

holds, we can replace ε′ by ε in (4.22). Consequently, the same expansion holds if we
consider the series (m, bm(1+ε)c), (m+1, b(m+1)(1+ε)c), (m+2, b(m+2)(1+ε)c), . . .
and the corresponding hash tables, what completes the proof of the theorem.

4.3 Bipartite random graphs and standard cuckoo hashing

Our next goal is the adoption of this ideas to bipartite cuckoo graphs, as defined in
Chapter 1. Again, we are interested in the probability, that such a graph contains no
complex component. More precisely, we consider bipartite multigraphs consisting of m
labelled nodes of each type and n labelled edges. Each of the labelled edges represents a
key and connects two independent uniform selected nodes of different type. The analysis
is once again based on generating functions. However, we have to replace the univariate
functions by (double exponential) bivariate generating functions to model the different
types of nodes, what makes the analysis more complicated. Nonetheless, we obtain the
following result.
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4 Sparse random graphs

Theorem 4.2. Suppose that ε ∈ (0, 1) is fixed. Then the probability p(n,m) that a
cuckoo hash of n = b(1 − ε)mc data points into two tables of size m succeeds, (that is,
the corresponding cuckoo graph contains no complex component,) is equal to

p(n,m) = 1− (2ε2 − 5ε+ 5)(1− ε)3

12(2− ε)2ε3
1
m

+O
(

1
m2

)
. (4.24)

A sketch of the proof can be found in Kutzelnigg [2006]. A detailed version of the proof
is given in Drmota and Kutzelnigg [2008].

Proof of Theorem 4.2

Once more, we start counting all bipartite graphs without considering the type of their
components. Let Gm1,m2,n denote the set of all node and edge labelled bipartite multi-
graphs (V1, V2, E) with |V1| = m1, |V2| = m2, and |E| = n. By definition, it is clear that
the number of all graphs of the family Gm1,m2,n equals

#Gm1,m2,n = mn
1m

n
2 . (4.25)

In particular, we are interested in the case m1 = m2 = m and n = b(1 − ε)mc, where
ε ∈ (0, 1). This means that the graph is relatively sparse.

Next, let G◦m1,m2,n denote those graphs in Gm1,m2,n without complex components, that
is, all components are either trees or unicyclic. Further,

g◦(x, y, v) =
∑

m1,m2,n

#G◦m1,m2,n

xm1

m1!
ym2

m2!
,
vn

n!
(4.26)

denotes the corresponding generating function. First, we want to describe this generating
function. For this purpose we will now consider bipartite trees.

We call a tree bipartite if the vertices are partitioned into two classes V1 (“black” nodes)
and V2 (“white” nodes) such that no node has a neighbour of the same class. They are
called labelled if the nodes of first type, that is nodes in V1, are labelled by 1, 2, . . . , |V1|
and the nodes of second type are independently labelled by 1, 2, . . . , |V2|, see also Gimenez
et al. [2005].

Let T1 denote the set of bipartite rooted trees, where the root is contained in V1,
similarly T2 the set of bipartite rooted trees, where the root is contained in V2, and T̃
the class of unrooted bipartite trees. Furthermore, let t1,m1,m2 resp. t2,m1,m2 denote the
number of trees in T1 resp. T2 with m1 nodes of type of type 1 and m2 of type 2. Similarly
we define t̃m1,m2 . The corresponding generating functions are defined by

t1(x, y) =
∑

m1,m2≥0

t1,m1,m2

xm1

m1!
ym2

m2!
, (4.27)

t2(x, y) =
∑

m1,m2≥0

t2,m1,m2

xm1

m1!
ym2

m2!
, (4.28)

and by

t̃(x, y) =
∑

m1,m2≥0

t̃m1,m2

xm1

m1!
ym2

m2!
. (4.29)

The assertion of the following lemma is a first attempt exploring these trees.
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4.3 Bipartite random graphs and standard cuckoo hashing

Lemma 4.2. The generating functions t1(x, y), t2(x, y), and t̃(x, y) are given by

t1(x, y) = xet2(x,y), t2(x, y) = yet1(x,y), (4.30)

and by
t̃(x, y) = t1(x, y) + t2(x, y)− t1(x, y)t2(x, y). (4.31)

Furthermore we have

t1,m1,m2 = mm2
1 mm1−1

2 , t2,m1,m2 = mm2−1
1 mm1

2 , (4.32)

and
t̃m1,m2 = mm2−1

1 mm1−1
2 . (4.33)

The explicit formula for t̃m1,m2 is originally due to Scoins [1962].

Proof. The functional equations (4.30) are obviously given by their recursive description.
Note that t1(x, y) = t2(y, x) holds and that t1(x, x) equals the usual tree function t(x)
defined in (4.4). Thus, t1(x, y) and t2(x, y) are surely analytic functions for |x| < e−1 and
|y| < e−1. This holds due to the fact that the radius of convergence of t(x) equals 1/e.

In the last section, we mentioned that the generating function of usual unrooted labelled
trees is given by t(x)− t(x)2/2. Thus, (4.31) is a generalisation of this result, and can be
proved in a similar way. First, consider a rooted tree, possessing a black root labelled by
1, as an unrooted tree. Next, examine an unordered pair (t1, t2) of trees from T1 × T2,
and join the roots by an edge. If the black node labelled by 1 is contained in t1, consider
the root of t2 as new root, and we obtain a tree possessing a white root and at least one
black node. Else, consider the root of t1 as new root, and we obtain a tree with a black
root node not labelled by 1.

Lagrange inversion applied to the equation t1(x, y) = x exp
(
yet1(x,y)

)
yields

[xm1ym2 ]t1(x, y) = [ym2 ]
1
m1

[um1−1]
(
eye

u)m1

= [ym2 ]
1
m1

[um1−1]
∑
k≥0

∑
l≥0

mk
1y
k

k!
ulkl

l!

= [ym2 ]
1
m1

∑
k≥0

mk
1y
k

k!
km1−1

(m1 − 1)!
=
mm2

1 mm1−1
2

m1!m2!
. (4.34)

Furthermore, t̃m1,m2 = t1,m1,m2/m1 = t2,m1,m2/m2 holds since there are exactly m1 ways
to choose the root of type 1 in an unrooted tree with m1 nodes of type 1.

Later on, we will make use of the partial derivatives of this functions.

Lemma 4.3. The partial derivatives of the functions t̃(x, y), t1(x, y) and t1(x, y) are
given by

∂

∂x
t̃(x, y) =

t1(x, y)
x

,
∂

∂y
t̃(x, y) =

t2(x, y)
y

, (4.35)

∂

∂x
t1(x, y) =

t1(x, y)
x(1− t1(x, y)t2(x, y))

,
∂

∂y
t1(x, y) =

t1(x, y) t2(x, y)
y(1− t1(x, y)t2(x, y))

, (4.36)

and
∂

∂x
t2(x, y) =

t1(x, y) t2(x, y)
x(1− t1(x, y)t2(x, y))

,
∂

∂y
t2(x, y) =

t1(x, y)
y(1− t1(x, y)t2(x, y))

. (4.37)
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Proof. All this results can be easily calculated using implicit differentiation. For instance,
we obtain ∂

∂x t1(x, y) with the equation system

∂

∂x
t1(x, y) =

∂

∂x

(
xet2(x,y)

)
= et2(x,y) + xet2(x,y) ∂

∂x
t2(x, y), (4.38)

∂

∂x
t2(x, y) =

∂

∂x

(
yet1(x,y)

)
= yet1(x,y) ∂

∂x
t1(x, y). (4.39)

Next, we draw our attention on unicyclic components.

Lemma 4.4. The generating function of a connected graph with exactly one cycle is given
by

c(x, y) =
∑
k≥1

1
2k
t1(x, y)kt2(x, y)k =

1
2

log
1

1− t1(x, y)t2(x, y)
. (4.40)

Proof. Of course, a cycle has to have an even number of nodes, say 2k, where k nodes are
black and the other k nodes are white. A cyclic node of black colour can be considered as
the root of a rooted tree of the set T1 and similarly, a white cyclic node can be considered
as the root of a rooted tree of the set T2. Note that we have to divide the product of
the generating functions t1(x, y)kt2(x, y)k by 2k to account for cyclic order and change
of orientation. Hence, the corresponding generating functions of a unicyclic graph with
2k cyclic points is given by

1
2k
t1(x, y)kt2(x, y)k. (4.41)

Consequently, the claimed equation holds.

Using these functions, we can describe the generating function g◦(x, y, v).

Lemma 4.5. The generating function g◦(x, y, v) is given by

g◦(x, y, v) =
e

1
v
t̃(xv,yv)√

1− t1(xv, yv)t2(xv, yv)
. (4.42)

Proof. We have to count graphs where each component is either an unrooted tree (that
is counted by t̃(x, y)) or a graph with exactly one cycle. Since a cyclic component of
size m1 + m2 possesses exactly the same number of edges as nodes and since there are
(m1 + m2)! possible edge labels, the corresponding generating function that takes the
edges into account in given by c(xv, yv). Similarly, a tree of size m1 + m2 has exactly
n = m1 +m2− 1 edges. Consequently the generating function t̃(xv, yv)/v corresponds to
a bipartite unrooted tree. Hence, the generating function g◦(x, y, v) is given by

g◦(x, y, v) = e
1
v
t̃(xv,yv)+c(xv,yv) =

e
1
v
t̃(xv,yv)√

1− t1(xv, yv)t2(xv, yv)
, (4.43)

which completes the proof of the lemma.

Corollary 4.1. The number of graphs #G◦m1,m2,n is given by

#G◦m1,m2,n =
m1!m2!n!

(m1 +m2 − n)!
[xm1ym2 ]

t̃(x, y)m1+m2−n√
1− t1(x, y)t2(x, y)

. (4.44)
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We use the corollary and Cauchy’s Formula and obtain

#G◦m,m,n =
−(m!)2 n!

4π2(2m− n)!

∮ ∮
t̃(x, y)2m−n√

1− t1(x, y)t2(x, y)
dx

xm+1

dy

ym+1
. (4.45)

This is in fact an integral that can be asymptotically evaluated using a (double) saddle
point method, see Theorem 3.2. Additionally, we obtain by Stirling’s formula (3.23) the
asymptotic expansion

(m!)2 n!
(2m− n)!

=
2πm2m+1nn

e2n(2m− n)2m−n

√
n

2m− n

×
(

1 +
1 + ε′ − ε′2

6(1− ε′)2m
+

1 + 2ε′ − ε′2 − 2ε′3 + ε′4

72(1− ε′2)2m2
+O

(
1
m3

))
, (4.46)

where ε′ = 1− n/m.
For our problem, it turns out that if

ε′ = 1− n

m
= 1− b(1− ε)mc

m
, (4.47)

is fixed in (0, 1), the saddle point is given by

x0 = y0 =
n

m
e−

n
m = (1− ε′)eε

′−1 <
1
e
. (4.48)

This can be easily checked. By symmetry it is clear that x0 = y0. Further, t1(x, x) =
t(x) = xet(x) equals the tree function. Hence we get

t1(x0, x0) = 1− ε′ =
n

m
, t̃(x0, x0) = 1− ε′2 =

n

m

(
2− n

m

)
. (4.49)

For instance, we further obtain

κ20 =
t1(x0, y0)

(1− t1(x0, y0)t2(x0, y0))t̃(x0, y0)
− t1(x0, y0)2

t̃(x0, y0)2
=

ε′2 − ε′ + 1
(ε′ + 1)2 ε′ (2− ε′)

, (4.50)

κ11 =
t1(x0, y0)t2(x0, y0)

(1− t1(x0, y0)t2(x0, y0))t̃(x0, y0)
− t1(x0, y0)t2(x0, y0)

t̃(x0, y0)2
=

1− 2ε′

(ε′ + 1)2 ε′ (2− ε′)
,

(4.51)
and

∆ =
1− ε′

ε′(2− ε′)(ε′ + 1)3
=

m4n

(2m− n)3(m2 − n2)
. (4.52)

Further cummulants can be calculated in the same way, but have been computed with
help of a computer algebra system in a half-automatic way. The maple source file is
included in the attached CD-Rom, see also Appendix B.

We set

f → t̃, g → 1√
1− t1t2

, k → 2m− n, m1 → m, and m2 → m,
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in Theorem 3.2 and apply the saddle point method. Thus, we obtain an asymptotic
expansion of the double integral of (4.45) possessing the leading coefficient

t̃(x0, y0)2m−n

2π(2m− n)xm0 y
m
0

√
1− t1(x0, y0)t2(x0, y0)

√
∆

=
e2nm2n+1(2m− 2)2m−n−1

2πnnm2m
√

∆
√
m2 − n2

. (4.53)

Furthermore, the coefficient of 1/m of this asymptotic expansion is given by

C =
ε′6 − 10ε′5 + 21ε′4 − 2ε′3 − 27ε′2 + 20ε′ − 5

12ε′3(−2 + ε′)2(1− ε′)
. (4.54)

With help of this results and (4.46) we finally obtain the asymptotic expansion

#G◦m,m,(1−ε′)m = m2(1−ε′)m
(

1 +
C

(1 + ε′)m
+

1 + ε′ − ε′2

6(1− ε′)2m
+O

(
1
m2

))
,

= m2(1−ε′)m
(

1− 1
m

(2ε′2 − 5ε′ + 5)(1− ε′)3

12(2− ε′)2ε′3
+O

(
1
m2

))
, (4.55)

of the number of graphs without complex components.
We may now replace ε′ by ε = ε′ +O(1/m). Let p(n,m) denote the probability, that

every component of the cuckoo graph is either a tree or unicyclic, after the insertion of n
edges. So, we finally obtain

p(n,m) =
#G◦m,m,b(1−ε)mc
#Gm,m,b(1−ε)mc

= 1− 1
m

(2ε2 − 5ε+ 5)(1− ε)3

12(2− ε)2ε3
+O

(
1
m2

)
. (4.56)

This step completes the proof of Theorem 4.2. Figure 4.1 depicts the graph of h(ε) =
(2ε2 − 5ε + 5)(1 − ε)3/(12(2 − ε)2ε3). The series expansion of the function h(ε) with
respect to ε→ 0 is given by

h(ε) =
5
48
ε−3 − 5

16
ε−2 +

21
64
ε−1 − 13

96
+

3
256

ε+
1

256
ε2 +

1
1024

ε3 +O (ε4) . (4.57)

We want to note that it is also possible to obtain a slightly more precise asymptotic
expansion for

p(n,m) = 1− h(ε)
m

− ĥ(ε)
m2

+O
(

1
m3

)
, (4.58)

where h̃(ε) is again explicit. This can be done by refining the calculations related to
Lemma 3.2.

For example, we can apply these expansions in order to obtain asymptotic represen-
tations for the probability q(n + 1,m) that the insertion of the n + 1-st edge creates a
bicyclic component, conditioned on the property, that the first n insertions did not create
such a component.

Lemma 4.6. The probability that the insertion of the n+1-st inserted key forces a rehash
is given by

q(n+ 1,m) = −h
′(ε)
m2

+O
(

1
m3

)
. (4.59)

This is uniform for n/m ≤ 1− η, assuming η > 0.
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Proof. By definition we have p(n+ 1,m) = (1− q(n+ 1,m))p(n,m). Hence we get

q(n+ 1,m) =
p(n,m)− p(n+ 1,m)
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=
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(4.60)

4.4 Asymmetric cuckoo hashing

As mentioned in Chapter 1, asymmetric cuckoo hashing uses tables of different size. To
be precise, we choose the tables in such a way, that the first table holds more memory
cells than the second one. Thus, we expect that the number of keys actually stored in the
first table increases, what leads to improved search and insertion performance. In this
section, we adopt the previous analysis such that it covers the asymmetric variant too.
During the analysis, we make use of the factor of asymmetry c. This constant determines
the size of both hash tables, which hold m1 = bm(1+c)c respectively m2 = 2m−m1 cells.
Thus, the equation c = 0 corresponds to the standard and hence symmetric algorithm.

Theorem 4.3. Suppose that c ∈ [0, 1) and ε ∈ (1 − √
1− c2, 1) are fixed. Then, the

probability that an asymmetric cuckoo hash of n = b(1− ε)mc data points into two tables
of size m1 = bm(1 + c)c respectively m2 = 2m−m1 succeeds, (that is, the corresponding
cuckoo graph contains no complex component,) is equal to

1− (1− ε)3(10− 2ε3 + 9ε2 − 3c2ε2 + 9εc2 − 15ε+ 2c4 − 10c2)
12(2ε− ε2 − c2)3(c2 − 1)

1
m

+O
(

1
m2

)
. (4.61)

See also Kutzelnigg [2008] for a sketch of the proof of this theorem.

Proof of Theorem 4.3

Since Corollary 4.1 already covers cuckoo graphs with a different number of nodes of each
type, the only difference to the proof of Theorem 4.2 is the application of the saddle point
method. Now, our starting point is the generalised equation

#G◦m1,m2,n =
−m1!m2!n!

4π2(m1 +m2 − n)!

∮ ∮
t̃(x, y)m1+m2−n√
1− t1(x, y)t2(x, y)

dx

xm1+1

dy

ym2+1
. (4.62)

According to Theorem 3.2, the saddle point is determined by the system consisting of
the equations

m1

m1 +m2 − n
=

x0

t̃(x0, y0)
∂

∂x
t̃(x0, y0) and

m2

m1 +m2 − n
=

y0

t̃(x0, y0)
∂

∂y
t̃(x0, y0).

(4.63)
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Using Lemma 4.3, the system becomes to

m1

m1 +m2 − n
=
t1(x0, y0)
t̃(x0, y0)

and
m2

m1 +m2 − n
=
t2(x0, y0)
t̃(x0, y0)

. (4.64)

Further, with help of Lemma 4.2, we obtain the following equations:

m1

m1 +m2 − n
=

t1(x0, y0)
t1(x0, y0) + t2(x0, y0)− t1(x0, y0)t2(x0, y0)

,

m2

m1 +m2 − n
=

t2(x0, y0)
t1(x0, y0) + t2(x0, y0)− t1(x0, y0)t2(x0, y0)

. (4.65)

Solving this system for t1(x0, y0) and t2(x0, y0) exhibits the solution

t1(x0, y0) =
n

m2
and t2(x0, y0) =

n

m1
. (4.66)

Finally, it turns out that the saddle point is given by

x0 = t1(x0, y0)e−t2(x0,y0) =
n

m2
e
− n
m1 and y0 = t2(x0, y0)e−t1(x0,y0) =

n

m1
e
− n
m2 .

(4.67)
Again, we introduce the notation

ε′ = 1− n

m
= 1− b(1− ε)mc

m
. (4.68)

We observe that due to the singularity of the denominator, the saddle point method
is only applicable if the relation 1 > t1(x0, y0)t2(x0, y0) holds. Hence we obtain the
inequality

1 >
n

m1

n

m2
=

n

(1 + c)m
n

(1− c)m
=

(1− ε′)2

1− c2
, (4.69)

and finally the condition
ε′ > 1−

√
1− c2. (4.70)

The cummulants can be calculated in a similar way as the saddle point, but have been
computed using a computer algebra system in a half-automatic way. The maple source
file is included in the attached CD-Rom, see also Appendix B.

Further, we apply Theorem 3.2 using the setting

f → t̃, g → 1√
1− t1t2

, k → m(1 + ε′), m1 → m(1 + c), and m2 → m(1− c),

to obtain an asymptotic expansion of the double integral of (4.62). In particular, we
obtain that this asymptotic expansion possesses a leading coefficient equal to

t̃(x0, y0)2m−n
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√
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, (4.71)
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and the coefficient of 1/m is given by

C =
−10− 45ε′ + 74ε′2 + 10ε′2c4 − 6ε′3c4 + 2c4 − 23ε′3 − 44ε′4 + 41ε′5
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12(−1 + ε′)(c2 − 2ε′ + ε′2)3
. (4.72)

Additionally, we obtain by using Stirling’s formula (3.23) the asymptotic expansion
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Combining this results we finally obtain the asymptotic expansion
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(4.74)

of the number of graphs without complex components.
We now replace ε′ by ε = ε′ +O(1/m) and obtain the claimed result.

4.5 Comparison and conclusion

In this section, we discuss the influence of this chapter’s results on the practical application
of cuckoo hashing. First of all, we compare the results concerning the simplified algorithm
with the standard data structure. The upper diagram of Figure 4.1 displays the factor of
1/m of the asymptotic expansion given in Theorem 4.1 resp. 4.2, depending on ε. It can
be easily seen, that the failure probability of the simplified version is slightly increased
for all ε. However, both functions exhibit the same behaviour as ε tends to zero. Further,
the different behaviour for small load factors (that is ε close to one), is not of strong
influence, since the failure rate is still small. Thus, the practical performance of this two
algorithms is almost identical.

The second diagram of Figure 4.1 depicts the influence of an increasing asymmetry
factor c. The leftmost curve corresponds to an asymmetry c = 0 and, hence, to the
standard algorithm. The further curves correspond to asymmetry factors c = 0.2, c = 0.3,
and c = 0.4 from left to right. We observe that the failure probability increases as the
asymmetry increases. Especially the reduced maximum load factor is easily notified.
This is a major weak point of asymmetric cuckoo hashing and one has to investigate
very carefully if other properties justify the usage of this algorithm. This will be done in
Chapter 7, together with an analysis of search and insertion operations.
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4 Sparse random graphs

One might argue, that the previous conclusions are based on asymptotic expansions
only, thus it is not certain if the observations hold for practical relevant settings. To
overcome this weak point, we present numerical results in Table 4.1. From the results
given in the table, we find that our asymptotic results can be understood as a good
approximation as long as the load is not too close to the critical value. We notify that
our approximation tends to overestimate the number of failures if the tables are small
and possess relatively high load, and that the accuracy increases with the size of the
tables of the investigated data structure. Further, we notice that cuckoo hashing is very
reliable, except if the load is close to the critical value. Additionally, the reliability of the
algorithm increases as the table size is raised for fixed and noncritical ε.

As for the theoretical analysis, the numerical data show that the number of unsuccess-
ful constructions is influenced by the asymmetry of the tables in use. The higher the
difference of the numbers of storage cells of the two tables is, the higher is the chance
of a failure. However the influence is barley noticeable if the data structure holds few
keys only. Concerning simplified cuckoo hashing, we observe the expected behaviour, but
we want to emphasise once more that there is only a slight increase of the number of
unsuccessful constructed table of about five percent.

The presented theorems of this chapter imply strong restrictions on the load factor of
the data structure by a lower bounds on ε. What happens if this bound will we exceeded?
Numerically obtained data show, that the failure rate increases very fast as the number
of keys inserted in the table violates the restriction on the load factor. Table 4.1 provides
such data concerning asymmetric cuckoo hashing. Note that an asymmetry factor c = 0.3
leads to a lower bound of εmin ≈ 0.046. Further, we obtain a minimal value εmin ≈ 0.083
corresponding to an asymmetry of c = 0.4. Thus, the settings (c = 0.3, ε = 0.04),
(c = 0.4, ε = 0.06) and (c = 0.4, ε = 0.04) are slightly beyond the critical ratio. We
observe that the number of unsuccessful constructed tables is by far greater than outside
this critical range. The failure rate increases as the size of the data structure increases in
contrast to the behaviour of non critical inputs. It might be possible to store more than
the critical number of keys in a cuckoo hash table, but one cannot expect a significant
higher fill ratio. A further analysis of this “critical case” can be found in Chapter 5.
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Figure 4.1: The first coefficient of the asymptotic expansion of the failure probability for
various cuckoo hash algorithms. The upper diagram displays the curves corresponding
to the standard algorithm and the simplified version. The second diagram shows the
curves corresponding to asymmetry factors c = 0 (i.e. the standard algorithm), c = 0.2,
c = 0.3, and c = 0.4 from left to right.
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m ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04
data exp. data exp. data exp. data exp. data exp.

standard cuckoo hashing
5·103 38 36.5 649 772 5070 7606 14467 40078 25624 144036
104 16 18.2 288 336 3046 3803 9954 20039 19857 72018

5·104 1 3.65 62 67.2 676 761 3127 4008 8439 14403
105 1 1.82 31 33.6 362 380 1753 2004 5210 7202

5·105 0 0.36 7 6.7 76 76 398 401 1284 1440
asymmetric cuckoo hashing, c = 0.1

5·103 31 38.1 653 730 5578 8940 16589 52455 29598 216847
104 14 19.1 384 365 3368 4470 11853 26228 23654 108423

5·104 2 3.81 66 73 867 894 4024 5246 11096 21685
105 3 1.91 43 36.5 435 447 2160 2623 6957 10842

5·105 1 0.38 3 7.3 97 89 461 525 1926 2168
asymmetric cuckoo hashing, c = 0.2

5·103 30 43.8 858 951 8165 15423 25663 141571 45728 500000
104 16 21.9 456 476 5185 7712 19759 70785 40465 500000

5·104 5 4.38 81 95.1 1388 1542 8272 14157 25929 122500
105 3 2.19 55 47.6 683 771 4930 7079 19836 61250

5·105 0 0.44 10 9.5 165 154 1291 1416 7731 12250
asymmetric cuckoo hashing, c = 0.3

5·103 67 56 1336 1575 16392 51955 53808 500000 95818 -
104 26 28 725 787 11793 25977 49823 500000 102239 -

5·104 3 5.6 154 157 3894 5195 36907 342931 123219 -
105 3 2.8 81 78.7 2187 2598 29834 171466 135348 -

5·105 1 0.56 8 15.7 532 520 14957 34293 182111 -
asymmetric cuckoo hashing, c = 0.4

5·103 74 82.6 2958 3850 49422 500000 153957 - 243458 -
104 42 41.3 1673 1925 44773 500000 182475 - 302164 -

5·104 12 8.26 373 385 30758 192279 286374 - 459241 -
105 6 4.13 176 193 24090 96139 351809 - 492741 -

5·105 2 0.83 29 38.5 10627 19228 485515 - 500000 -
simplified cuckoo hashing

5·103 44 49.2 710 767 5272 8100 15276 41589 26802 147600
104 27 24.6 386 383 3122 4050 10451 20795 20536 73800

5·104 5 4.92 87 76.7 737 810 3414 4159 8666 14760
105 3 2.46 32 38.3 417 405 1831 2079 5323 7380

5·105 0 0.49 7 7.7 85 81 417 416 1358 1476

Table 4.1: Number of failures during the construction of 5·105 cuckoo hash tables. The
table provides numerical results (data) as well as the expected number of failures (exp.)
calculated using the corresponding asymptotic expansion. Blank entries refer to su-
percritical settings, where our asymptotic approximations are not applicable. We use
a pseudo random generator to simulate good hash functions. Further information
concerning the setup and implementation details can be found in Chapter 9 resp. Ap-
pendix A.
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Chapter 5
The “Critical Case”

5.1 Introduction

The previous analysis of cuckoo hashing requested a load factor strictly below 0.5, that
is the case ε = 0. In this chapter, we consider the asymptotic behaviour of standard
and simplified cuckoo hashing using this critical load. Further, it is also interesting what
happens beyond this bound and how many keys can be stored using cuckoo hashing if we
proceed until an error occurs.

5.2 Simplified cuckoo hashing

Theorem 5.1. The probability that a simplified cuckoo hash of m data points into a
table of size 2m succeeds, (that is, the corresponding cuckoo graph contains no complex
component,) is equal to √

2
3

+ O(1). (5.1)

A proof of this theorem can be found in Flajolet et al. [1989]. See also Janson et al.
[1993] for further results.

5.3 Standard cuckoo hashing

Theorem 5.2. The probability p(m,m) that a cuckoo hash of m data points into two
tables of size m succeeds, (that is, the corresponding cuckoo graph contains no complex
component,) is equal to

p(n, n) =

√
2
3

+ O(1). (5.2)

This case is more delicate since limiting the saddle point x0 = 1/e coalesces with the
singularity of the denominator in (4.44). (Note that t1(1/e, 1/e) = 1.) Hence we expect a
phase transition where the singularity behaviour of the denominator gets more and more
important. Definitely, this is a difficult analytic problem and therefore not easy to handle.
In particular, one has to handle the singularity structure of t1(x, y)t2(x, y) around x = 1/e
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and y = 1/e, which is surely feasible, but the choice of the double contour integral is not
clear.

For the sake of shortness we will only work out the limiting case ε = 0, that is,
m = n. Even in this case we do not work directly with the representation (4.44) but
apply Lagrange’s inversion formula first. In particular, we use the fact that t1(x, y)
satisfies the equation t1 = x exp

(
yet1

)
. This leads again to a saddle point integral, where

the denominator is explicit and does not contain implicitly defined functions as before.
The following proof is divided in two parts. We start collecting intermediate results, that
will be required in the second part, that proofs the claimed property.

Intermediate Results

Lemma 5.1.

#G◦m,m,m = (m!)2
∑
k≥0

(
2k
k

)
1
4k

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k. (5.3)

Proof. We use Corollary 4.1 and the series expansion

1√
1− z

=
∑
k≥0

(
2k
k

)
1
4k
zk. (5.4)

Further, we define the functions

f(u, y) = (u+ yeu(1− u)) exp (yeu) , (5.5)

l(u, y) = uk (yeu)k , (5.6)

and

h(u, y) = u
mu−myeuu2 + ku+ kyeu + ku2 − ku2yeu

u (u+ yeu(1− u))
. (5.7)

Lemma 5.2.

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k =
1
m

[umym]f(u, y)ml(u, y)h(u, y). (5.8)

Proof. Let the function φ(u, y) be defined as φ(u, y) = exp (yeu). The generating function
t1(x, y) satisfies the relation t1(x, y) = xφ (t1(x, y), y) due to its definition. Further, if we
set

g(u, y) = (u+ yeu(1− u))m uk (yeu)k , (5.9)

the relation
t̃(x, y)mt1(x, y)kt2(x, y)k = g(t1(x, y), y) (5.10)

holds. Note that φ(0, y) 6= 0, so that we can apply Lagrange’s Inversion Theorem and
obtain:

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k = [xmym]g(t1(x, y), y)

= [um−1ym]
1
m
φ(u, y)m

∂

∂u
g(u, y)

= [um−1ym]
1
m

(exp (yeu))m
∂

∂u

(
(u+ yeu(1− u))m uk (yeu)k

)
. (5.11)

52



5.3 Standard cuckoo hashing

The differentiation and some simplifications finalise the proof.

Obviously, the coefficient [umym]f(u, y)ml(u, y)h(u, y) equals zero if k is greater than
m. The saddle point method grants us access to the coefficient for “small” k. The
following lemma fills the gap.

Lemma 5.3. Assume that k ≥ m
1
3
+ε is satisfied for a positive ε. Then, there exists a

positive constant c such that

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k = O (e2m−cmε) (5.12)

holds.

Proof. Note that the bound

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k ≤ r−2mt̃(r, r)mt1(r, r)kt2(r, r)k (5.13)

holds for all r satisfying 0 < r < 1/e. We set r = (1− η) /e. Recall that t1(x, x)
equals the usual tree function t(x) and that t̃(x, x) = 2t(x) − t2(x) holds. Further, the
singular expansion of t(x) around its singularity 1/e is well known to be (cf. Flajolet and
Sedgewick [2008])

t(x) = 1−
√

2
√

1− ex+
2
3

(1− ex)− 11
18
√

2
(1− ex)

3
2 +O ((1− ex)2

)
. (5.14)

Thus, we obtain the inequality

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k ≤ e2m+ 4
3

√
2mη

3
2−2

√
2η

1
2 k+O(mη2)+O(ηk). (5.15)

Setting η = m−2/3 allows us to compute the claimed bound.

The coefficient [umym]f(u, y)ml(u, y)h(u, y) is closely connected to the Lommel func-
tions of second kind (cf. Prudnikov et al. [1989]) if k is “small” (i.e. k = O(m1/3+ε)).

Definition 5.1. Let µ + ν + 1 6= 0, µ − ν + 1 6= 0, µ−ν+3
2 6∈ Z \ N, and µ+ν+3

2 6∈ Z \ N.
The Lommel function of first kind is defined via a hypergeometirc function as

sµ,ν(x) =
xµ+1

1F2

(
1; µ−ν+3

2 , µ+ν+3
2 ;−1

4x
2
)

(µ+ ν + 1)(µ− ν + 1)
. (5.16)

If further 1+µ−ν
2 6∈ Z \ N and 1+µ+ν

2 6∈ Z \ N, the Lommel function of second kind is
defined as

Sµ,ν(x) = sµ,ν(x) + 2µ−1Γ
(
µ+ ν + 1

2

)
Γ
(
µ+ ν + 1

2

)
×
(
Jν(x) sin

(µ− ν)π
2

− Yν(x) cos
(µ− ν)π

2

)
, (5.17)

where Jν(x) and Yν(x) denote Bessel functions.
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Hereby, the Bessel functions Jν(x) of the first kind are defined as the solutions to the
differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0. (5.18)

which are nonsingular at the origin. Additionally, the Bessel functions Yν(x) of the
second kind are the solutions to the differential equation which are singular at the origin,
see Abramowitz and Stegun [1970]. Further, note that the Lommel functions of first and
second kind are solutions of the inhomogeneous Bessel differential equation (cf. Zwillinger
[1992])

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = xµ+1. (5.19)

Lemma 5.4 (Integral representation of S1,2/3(x)). Let x be a positive real number. Then
the following relation holds,

S1,2/3(x) = 1 +
(

2
x

) 2
3

∞∫
0

exp
(
−u3 − 3

(x
2

) 2
3
u

)
u du. (5.20)

Proof. (Sketch) We denote the right hand side of (5.20) by g(x). Our goal is to show
that this function satisfies equation (5.18). Therefore, we start calculating its first and
second derivative with respect to x:

dg(x)
dx

= −
∞∫
0

(
2

5
3

3
x−

2
3 + 2u

)
exp

(
−u3 − 3

(x
2

) 2
3
u

)
u du, (5.21)

d2g(x)
dx2

=

∞∫
0

2
9

(
5 · 2 2

3x−
2
3 + 15u+ 9 · 2 1

3x
2
3u2
)

exp
(
−u3 − 3

(x
2

) 2
3
u

)
u du. (5.22)

After plugging in this results into equation (5.20), we conclude that this equation holds
if and only if the expression

∞∫
0

(
2

2
3x

4
3 +

4
3
u+ 2

4
3x

2
3u2

)
exp

(
−u3 − 3

(x
2

) 2
3
u

)
u du =

4
9

(5.23)

holds. The latter equation can be verified easily with help of its antiderivative

− 2
9

(
2 + 3 · 2 1

3x
2
3u
)

exp
(
−u3 − 3

(x
2

) 2
3
u

)
. (5.24)
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Lemma 5.5. Assume that k = O(m1/3+ε
)

holds. Then, there exists a positive real
constant c such that

1
m

[umym]f(u, y)ml(u, y)h(u, y)

=
√

2π
2π2

e2m

m
7
6

∞∫
0

se
− 2

3
s3− ks

3√m sin
(√

3ksm− 1
3 +

π

3

)
ds

+O
(
e2m−cm

− 1
12

)
+O

m− 7
6
− 1

24 e2m
∞∫
0

se
− 2

3
s3− ks

3√m ds

 (5.25)

holds. We can rewrite the integral in terms of Lommel functions and obtain that the main
contribution equals

√
2π

2π2

kie2m

m
3
2

(
S1, 2

3

(
i

4k
3
2

3
√
m

)
− S1, 2

3

(
−i 4k

3
2

3
√
m

))
. (5.26)

Proof. In this proof, ci denotes real positive constants. We use Lemma 5.2 and Cauchy’s
Formula and obtain

[xmym]t̃(x, y)mt1(x, y)kt2(x, y)k = − 1
m

1
4π2

∮ ∮
f(u, y)ml(u, y)h(u, y)

um+1ym+1
dy du. (5.27)

The corresponding saddle point is obtained using the equation system

∂

∂u
(log f(u, y)− log u− log y) = 0,

∂

∂y
(log f(u, y)− log u− log y) = 0, (5.28)

obtaining the solution u0 = 1, y0 = 1/e. As in Theorem 3.2, the cummulants are

κij =
[
∂i

∂σi
∂j

∂τ j
log f(u0e

σ, y0e
τ )
]

(σ,τ)=(0,0)

, (5.29)

particularly we obtain κ20 = 0, κ11 = 0, κ02 = 1, κ30 = −4, κ21 = −1, κ12 = 0, and
κ03 = 1. In fact, we cannot proceed in the same way as in Theorem 3.2, because the
determinant ∆ = κ20κ02 − κ2

11 equals zero. Instead, we perform the substitution

y = eiτ−1, u =

{
eζσ if =(u) ≥ 0
eζσ if =(u) < 0

where ζ = ei
2π
3 . (5.30)

We concentrate on the path in the upper half plane (the second part is similar) and obtain
the integral

I = − iζ

4π2

1
m

2π√
3∫

0

π∫
−π

f
(
eζσ, eiτ−1

)m
l
(
eζσ, eiτ−1

)
h
(
eζσ, eiτ−1

)
eζσme(iτ−1)m

dτ dσ. (5.31)

Let α ∈ (0, 2π/
√

3) and β ∈ (0, π). This choice will be discussed later. We divide the
integral in two parts

I1 = − iζ

4π2

1
m

α∫
0

β∫
−β

f
(
eζσ, eiτ−1

)m
l
(
eζσ, eiτ−1

)
h
(
eζσ, eiτ−1

)
eζσme(iτ−1)m

dτ dσ, (5.32)
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and I2 = I − I1. We continue calculating an approximation of I1 but before, we give an
upper bound on I2.

Consider the modulus of the function f
(
eζσ, eiτ−1

)
e−ζσe1−iτ if (σ, τ) is an element

of
[
0, 2π/

√
3
] × [−π, π]. A plot can be found in Figure 5.1. The function is unimodal

and attains it maximum at (σ, τ) = (0, 0). This can be verified using the mean value
theorem, a bound on the derivative, and the evaluation of the function on points of a
sufficient small grid. Further, a local expansion of this function around the origin is given
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Figure 5.1: The modulus of f
(
eζσ, eiτ−1

)
e−ζσe1−iτ in the relevant area.

by exp
(
2− 1

2τ
2 − 2

3σ
3 +O(σ2τ)

)
. We choose

α = m− 7
24 and β = m− 11

24 , (5.33)

such that α3m and β2m tend to infinity as m goes to infinity, but on the other hand the
terms of higher order like α2βm tend to zero. Hence, we conclude that the bound∣∣∣∣f

(
eζσ, eiτ−1

)
eζσeiτ−1

∣∣∣∣m ≤ e2m−c0m
− 1

8 (5.34)

holds, if σ ∈ [α, 2π/√3
]

and |τ | ∈ [β, π] are satisfied. Thus, we further obtain the bound

|I2| = O
(
e2m−c0m

− 1
8

)
. (5.35)

Next, we calculate an approximation of I1 with help of the following local expansions:
(replace ζ by ζ for the second case)

f
(
e
ζs
3√m , e

it√
m
−1
)m

= exp
(
m+ ζsm

2
3 + it

√
m− 1

2
t2 − 2

3
s3 +O

(
m− 1

24

))
, (5.36)

l
(
e
ζs
3√m , e

it√
m
−1
)

= exp
(

2ζ
3
√
m
ks+O

(
m− 3

24
+ε
))

, (5.37)

h
(
e
ζs
3√m , e

it√
m
−1
)

= −2ζsm
2
3

(
1 +O

(
m− 3

24

))
. (5.38)
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Using this expansions, and assuming that ε ≤ 1
12 holds, we infer:
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11
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(5.39)

We denote the remaining integral by I ′1:

I ′1 =

α 3√m∫
0

β
√
m∫

−β√m

se
− 1

2
t2− 2

3
s3+ 2ζ

3√m
ks
dt ds. (5.40)

Our next step is to “complete the tails”:
∞∫

β
√
m

e−
1
2
t2dt =

∞∫
0

e−
1
2
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√
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h2−hβ√mdh ≤

√
π

2
e−

1
2
β2m, (5.41)
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We apply this bounds and get the representation

I ′1 =

 ∞∫
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The second part of the integral representing (5.27) has the main contribution

−
√

2πiζ2
e2m

2π2m
7
6

∞∫
0

se
− 2

3
s3+ 2ζ

3√m
ks
ds (5.44)

and the error terms are of the same order as before.
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Proof of Theorem 5.2

All the intermediate results of the previous section allow us the calculate the number of
graphs without complex components. Our starting point is Lemma 5.1 and further, with
help of Lemma 5.2 we obtain the equation

#G◦m,m,m =
(m!)2

m

∑
k≥0

(
2k
k

)
1
4k

[umym]f(u, y)ml(u, y)h(u, y) (5.45)

= (m!)2(S1 + S2 + S3), (5.46)

where the sums S1, S2, and S3 are defined as below. The sum S3 is easily to handle,
because we have already mentioned that all coefficients are zero in the corresponding
range of k:

S3 =
1
m

∞∑
k=m

(
2k
k

)
1
4k

[umym]f(u, y)ml(u, y)h(u, y) = 0. (5.47)

We proceed with an upper bound of S2, which is obtained with help of Lemma 5.3:
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The last sum is more complicated to deal with. First, we plug in the result of Lemma 5.5:
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At this point, it is again convenient to split up the calculation:
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Once again, we split up and get:
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During this calculation, we used the bound 1/
√

1− e−x ≤ 1 + 1/
√
x. This estimate is

also useful for the “tail” I3:
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The integral I2 provides the main contribution:
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For instance, we may set ε = 1
12 , δ = 1

24 , and γ = 1
12 . Thus, we finally obtain:
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. (5.54)

The second sum can be handled in the same way. In particular we obtain the same result:
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. (5.55)

What is now still missing, are bounds for the remaining sums. These can be straightfor-
ward attained for S13:
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The sum S14 is a bit more complicate to handle, but we can proceed as in the calculation
of S11:
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Putting these results together, we finally obtain the equation

#G◦m,m,m = (m!)2
√

2e2m
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(
1 +O
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m− 1

24

))
= m2m

√
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(
1 +O

(
m− 1

24

))
. (5.58)

Together with (4.25), this step completes the proof of Theorem 5.2.

5.4 Conclusion

In this chapter we investigated the “critical” value ε = 0, that corresponds to the relation
m = n. We conclude that the success rate of both simplified and standard cuckoo hashing
drops from 1 +O(1/m) to

√
2/3 + O(1). The numerical results given in Table 5.1 exhibit

a similar behaviour, see also Table 4.1. Note that the observed number of errors is

60



5.4 Conclusion

m(= n) 5000 10000 50000 100000 500000
standard cuckoo hashing 81053 83138 86563 88021 89177

simplified cuckoo hashing 83100 85357 87972 88415 89751

Table 5.1: Number of failures during the construction of 5 ·105 cuckoo hash tables pos-
sessing a load factor 0.5, that is, ε = 0 holds. According to Theorem 4.1 resp. 4.2,
we expect 91752 errors. We use a pseudo random generator to simulate good hash
functions. Further information concerning the setup and implementation details can
be found in Chapter 9 resp. Appendix A.

m 5000 10000 50000 100000 500000
standard cuckoo hashing 5208 10322 50917 101440 504143
asymmetric c.h., c = 0.1 5181 10272 50661 100930 501618
asymmetric c.h., c = 0.2 5103 10118 49897 99406 493992
asymmetric c.h., c = 0.3 4972 9855 48593 96800 481019
asymmetric c.h., c = 0.4 4782 9476 46704 93030 462228

simplified cuckoo hashing 5204 10318 50907 101428 504133

Table 5.2: Average number of edges of the cuckoo graph at the moment when the first
bicyclic component occurs. The table provides numerical data obtained over a sample
size of 5·105. We use the same setup as in Table 5.1.

slightly below the expectation calculated using the asymptotic approximation. However,
the accuracy increases with increasing size of the table.

It is a well known fact that the structure of a growing1 (usual) random graph rapidly
changes if the number of edges approaches half the number of nodes. In particular, after
this so called “phase transition”, it is very likely that a “giant component” exists, that is
by far lager than any other remaining component. Further details are for instance given
in Flajolet et al. [1989], Janson et al. [1993], and Janson et al. [2000]. It seems to be very
likely that bipartite random graphs exhibit a similar behaviour, however no details are
known so far, cf. Blasiak and Durrett [2005].

Table 5.2 provides the numerically obtained average number of edges at the moment
before the first bicyclic component is created. Hence, this number equals the average
number of keys of a cuckoo hash table at the moment when a newly inserted key produces
an endless loop and forces a rehash. From the data given in the table, we conclude that
this number is only slightly greater than m for simplified and standard cuckoo hashing.
Due to Flajolet et al. [1989], we know that the first bicyclic component of a usual random
graph appears at “time” m+Θ

(
m−2/3

)
, what is in accordance with our numerical results.

Moreover, we conjure that the same (or a very similar) result holds for the bipartite graph
too. Concerning asymmetric cuckoo hashing, we observe once more that that asymmetry
decreases the maximum amount of allocated memory, that actually holds keys.

1We fix the number of vertices but successively add new edges.
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Chapter 6
The Structure of the Cuckoo Graph

6.1 Introduction

The performance of insertion operations using a cuckoo hash data structure is strongly
influenced by the properties of the underlying cuckoo graph. For instance, consider the
insertion of key into a tree component. The shape of the tree affects the number of
kick-out steps necessary to place the new key. In particular, the diameter of the tree
(that is the longest distance between to nodes) and the size of the tree component are
upper bounds of this number. On the other hand, an insertion operation dealing with a
unicyclic component takes at most twice the size of the component’s steps, see Devroye
and Morin [2003] or Chapter 1 for further details.

This chapter studies the properties of usual and bipartite random cuckoo graphs, such
as the expected size of the tree components, the number of cycles, and the number of
nodes contained in cyclic components. Based on these results, we provide an upper bound
for the construction cost in Chapter 7. Some parameters might also be of interest in other
applications, see, e.g., Blasiak and Durrett [2005].

6.2 The non-bipartite Cuckoo Graph

We start our analysis considering usual random graphs related to simplified cuckoo hash-
ing. In what follows, we prove the following results, see also Drmota and Kutzelnigg
[2008].

Theorem 6.1. Suppose that ε ∈ (0, 1) is fixed and that n = b(1− ε)mc. Then a labelled
random multigraph with 2m vertices and n edges satisfies the following properties.

1. The number of unicyclic components with cycle length k has in limit a Poisson
distribution Po(λk) with parameter

λk =
1
2k

(1− ε)k , (6.1)

and the number of unicyclic components has in limit a Poisson distribution Po(λ),
too, with parameter

λ = −1
2

log ε. (6.2)
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2. Denote the number of tree components with k vertices by tk. Mean and variance of
this random variable are asymptotically equal to

µ = 2m
kk−2(1− ε)k−1ek(ε−1)

k!
, (6.3)

respectively

σ2 = µ− 2me2k(ε−1)k2k−4(1− ε)2k−3(k2ε2 + k2ε− 4kε+ 2)
(k!)2

. (6.4)

Furthermore tk satisfies a central limit theorem of the form

tk − µ

σ
→ N(0, 1). (6.5)

3. The number of vertices contained in cycles has in limit the distribution with char-
acteristic function

φ(s) =
√

ε

1− eis(1− ε)
, (6.6)

and, hence, expectation is asymptotically given by

1− ε

2ε
, (6.7)

and variance by
(1− ε)

2ε2
. (6.8)

4. Furthermore, the expected value of the number of nodes in unicyclic components is
asymptotically given by

(1− ε)
2ε2

, (6.9)

and its variance by
(1− ε)(2− ε)

2ε4
. (6.10)

Proof of Theorem 6.1

In this proof, we only consider graphs of G◦2m,n, i.e. the set of graphs without complex
components, but all results hold for unrestricted random graphs of G2m,n too. This can
be easily seen in the following way. Consider a random variable ξ defined on the set
G2m,n and ξ′, its restriction to G◦2m,n. Further, we denote the corresponding distribution
functions by Fξ(x) resp. Fξ′(x). Obviously, the relation

|Fξ(x)− Fξ′(x)| ≤ P(G2m,n \G◦2m,n) = O(1/m) (6.11)

holds due to Lemma 6.1 and Theorem 4.1.
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6.2 The non-bipartite Cuckoo Graph

Lemma 6.1. Consider a probability space (Ω,P) and a subset Ω′ of Ω such that P(Ω \
Ω′) = O(1/m) holds. Further, we define the probability measure P′ using P′(A) =
P(A ∩ Ω)/P(Ω′). Then the relation

|P(A)− P′(A)| ≤ P(Ω \ Ω′) = O
(

1
m

)
, (6.12)

is valid.

Proof. We start using basic transformations and obtain the equality

P(A) = P(A ∩ Ω) + P(A ∩ (Ω \ Ω′)) = P′(A)(1− P(Ω \ Ω′)) + P(A ∩ (Ω \ Ω′)). (6.13)

Hence we further derive the relation

P(A)− P′(A) = P(A ∩ (Ω \ Ω′))− P′(A)P(Ω \ Ω′), (6.14)

which implies the claimed inequality.

Similar to Chapter 4, we define the ratio

ε′ = 1− n

m
= 1− b(1− ε)mc

m
. (6.15)

Starting with a graph possessing 2m nodes and n = (1 − ε′)m edges, we increase the
parameters synchronously such that the ratio remains unchanged. In other words, we
consider an infinite series of graphs defined by parameters like (2m, (1−ε′)m), (4m, 2(1−
ε′)m), (6m, 3(1− ε′)m), . . . and so on.

The further proof of Theorem 6.1 is divided into several parts, each of it proves sep-
arately one of the claimed properties. Again, we use a generating function approach.
Recalling the generating function

g◦(x, v) = exp

(
1
2v
t̃(2xv) + log

1√
1− t(2xv)

)
=

e
1
2v
t̃(2xv)√

1− t(2xv)
. (6.16)

established in Lemma 4.1 that counts graphs without complex components. Now, we
introduce an additional variable to “mark” the parameter of interest, see for instance
Flajolet and Odlyzko [1990], Flajolet and Sedgewick [2008], and Drmota and Soria [1995,
1997] for further details of this method.

Number of Cycles

Lemma 6.2. The moment generating function of the limiting distribution of the number
of cycles resp. the number of cycles of length k in a graph of G◦2m,m(1+ε′) is given by

ψc(s) = exp
(

log ε′

2
(1− es)

)(
1 +O

(
1
m

))
, (6.17)

resp.

ψk(s) = exp
(
−(1− ε′)k

2k
(1− es)

)(
1 +O

(
1
m

))
. (6.18)

These results hold pointwise for any fixed real number s, as m→∞.
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6 The Structure of the Cuckoo Graph

Proof. We start with the calculation of the total number of cycles. Hence, we introduce
a new variable w, that marks each cyclic component. Thus, (6.16) becomes to

g◦c (x, v, w) = exp

(
1
2v
t̃(2xv) + w log

1√
1− t(2xv)

)
=

exp
(

1
2v t̃(2xv)

)
(1− t(2xv))w/2

. (6.19)

Clearly, the equation g◦c (x, v, 1) = g◦(x, v) is valid. Now, it’s straightforward to calculate
the k-th factorial moment

[xmvn]
[
∂k

∂wk
g◦c (x, v, w)

]
w=1

[xmvn]g◦c (x, v, 1)
, (6.20)

and, hence, expectation and variance, accordingly. Moreover, we can identify the limiting
distribution with help of the moment generating function

ψc(s) =
[x2mvn]g◦c (x, v, es)
[x2mvn]g◦c (x, v, 1)

. (6.21)

Since the number of tree components equals 2m − n, it is straightforward to eliminate
the variable v and we obtain the equation[

x2mvn

(2m)!n!

]
g◦c (x, v, e

s) =
2nn!(2m)!
(2m− n)!

[x2m]
t̃(x)2m−n

(1− t(x))e
s/2
. (6.22)

As in Chapter 4, we use Cauchy’s formula and the saddle point method to obtain an
asymptotic expansion. Note that we are able to use the same saddle point. However,
the calculation is easier because it is sufficient to calculate the leading term using the
saddle point method as developed in the proof of Theorem 3.1 although not all technical
conditions are satisfied. Nevertheless, the inequality∣∣(1− t(x))−e

s/2
∣∣ ≤ (1− t(x0))−e

s/2, (6.23)

that is satisfied on the line of integration, and conclude that the bound (3.35) still holds.
Furthermore, since es = O(1), the Taylor expansion (3.37) is still applicable, and hence we
obtain the same result. In the further calculation, we can concentrate our analysis on the
modified term, that is 1/(1− t(x))e

s/2 instead of 1/
√

1− t(x), because of cancellation.
Thus we obtain the moment generating function

ψc(s) =

√
1− t(x0)

(1− t(x0))es/2

(
1 +O

(
1
m

))
= ε′(1−e

s)/2

(
1 +O

(
1
m

))
, (6.24)

what completes the proof of the lemma’s first part.
The proof of the second part can be obtained analogously. Note that the generating

function of a component containing a cycle of length k is given by t(x)k/2k. We just use
the generating function

g◦k(x, v, w) =
exp

(
1
2v t̃(2xv) + (w − 1) 1

2k t(2xv)k
)√

1− t(2xv)
, (6.25)
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6.2 The non-bipartite Cuckoo Graph

in which cycles of length k are marked by w and get the equation[
x2mvn

(2m)!n!

]
g◦k(x, v, e

s) =
2nn!(2m)!
(2m− n)!

[x2m]
exp

(
(es − 1) 1

2k t(x)k
)√

1− t(x)
t̃(x)2m−n. (6.26)

Hence the moment generating function equals

ψk(s) =
[x2mvn]g◦k(x, v, e

s)
[x2mvn]g◦k(x, v, 1)

= exp
(

(es − 1)
1
2k
t(x0)k

)(
1 +O

(
1
m

))
. (6.27)

Note that the moment generating function of a Poisson distribution with parameter
λ is given by exp(−λ(1 − es)). Further, the results hold true too if we replace ε′ by ε
because of the relation

ε′ = ε+O
(

1
m

)
. (6.28)

Hence we obtain the same limiting distributions if we consider the series of graphs pos-
sessing 2m nodes and b(1 − ε)mc edges as m tends arbitrary to infinity. Together with
Lemma 6.1, this proves the first statement of Theorem 6.1.

Due to the additivity of the Poisson distribution, it is not surprising that the parameters
are related. To be more precise, the equation

∞∑
k=1

(1− ε)k

2k
=

1
2

log ε (6.29)

holds.

Trees with fixed size

Lemma 6.3. The number of tree components with k vertices of a randomly chosen mem-
ber of G◦2m,(1−ε′)m possesses mean

2m
kk−2(1− ε′)k−1ek(ε

′−1)

k!
+O (1) , (6.30)

and variance

µ− 2me2k(ε
′−1)k2k−4(1− ε′)2k−3(k2ε′2 + k2ε′ − 4kε′ + 2)

(k!)2
+O (1) . (6.31)

Proof. The proof of this result is more difficult to obtain than the proof of the previous
lemma, although we apply the same principle. We need the number of unrooted trees
of size k, denoted by t̃k. Note that the number of rooted trees possessing k node equals
kk−1. Since there exist exactly k possibilities to select the root, we conclude that the
equation t̃k = kk−2 holds if k is greater than one. Further, it is clear that there exists
exactly one unrooted tree possessing a single node and hence the previous formula holds
for this special case too. Now we introduce a variable w to mark tree components of size
k and obtain the generating function

g◦t (x, v, w) =
exp

(
1
v t̃(2xv) + (w − 1) 1

k! t̃kx
k(2v)k−1

)√
1− t(2xv)

, (6.32)
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6 The Structure of the Cuckoo Graph

that allows us to calculate the l−th factorial moment as follows

Ml =
[x2mvn]

[
∂l

∂wl
g◦t (x, v, w)

]
w=1

[x2mvn]g◦t (x, v, 1)
. (6.33)

The term included in the numerator simplifies to

[x2mvn]
[
∂l

∂wl
g◦t (x, v, w)

]
w=1

= [x2m]22m

[
∂l

∂wl

(
t̃(x) + (w − 1) 1

k! t̃kx
k
)2m−n

(2m− n)!
√

1− t(x)

]
w=1

= [x2m]22m t̃(x)2m−n−l

(2m− n)!
√

1− t(x)
(2m− n)l

(
t̃k
k!
xk
)l
. (6.34)

As usual we use Theorem 3.1 to calculate an asymptotic expansion. Hence, we obtain
that the leading term of Ml equals

(2m− n)l

t̃(x0)l

(
t̃k
k!
xk0

)l
=

2lml(1 + ε)l

(1− ε2)l

(
kk−2

k!
(1− ε′)ke(ε

′−1)k

)l (
1 +O

(
1
m

))
. (6.35)

In particular, that proofs the first claim of this lemma. Further, we conclude that the
variance is of order O(m) too, and that its calculation requires to determine the next
term of the asymptotic expansion. Now, we are doing this in a semi-automatic way using
Maple and obtain

Ml =
(

2m
kk−2(1− ε′)k−1

k!e(1−ε′)k

)l
×
(

1 +
(lε′2k2 + ε′k − 4lε′k + lε′k2 + 2l + 2− 3k)l

4(ε′ − 1)m
+O

(
1
m2

))
. (6.36)

Finally, we conclude that the variance equals

σ2 = M2 −M2
1 +M1 =

(
2m

kk−2(1− ε′)k−1

k!e(1−ε′)k

)2
ε′2k2 − 4ε′k + ε′k2 + 2

2(ε′ − 1)
+ µ, (6.37)

that completes the proof.

Similar to previous calculation, we may now replace ε′ by ε. As a direct consequence
of above’s result, we obtain the following lemma.

Lemma 6.4. The number of tree components contained in a randomly chosen member
of G◦2m,(1−ε′)m that possess k vertices, divided by m, converges towards

µ

m
= 2

kk−2(1− ε′)k−1ek(ε
′−1)

k!
, (6.38)

in probability.

Proof. Denote the number of tree components containing k nodes by tk. Using Markov’s
inequality, we obtain

P
(∣∣∣∣ tkm − µ

m

∣∣∣∣ ≥ m−1/3

)
≤ σ2

m2m−2/3

(
1 +O

(
1
m

))
= O

(
m−1/3

)
, (6.39)

and, hence, the claimed result.
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6.2 The non-bipartite Cuckoo Graph

However, it is possible to obtain a more precise result.

Lemma 6.5. The number of tree components of size k of a randomly selected member of
G◦2m,(1−ε′)m minus µ and divided by

√
m(1 + ε′), has in limit the characteristic function

φt(r) = exp
(
− σ2

2m(1 + ε)
r2
)(

1 +O
(

1
m

))
. (6.40)

This equation holds pointwise for any fixed real number r, as m→∞.

Proof. In this proof, we use of the shortened denotation M = 2m−n = m(1+ε′). Similar
to previous calculations, we obtain the characteristic function

φt(r) =
[x2mvn]g◦t

(
x, v, e

ir√
M

)
[x2mvn]g◦t (x, v, 1)

e
−i µ√

M
r
, (6.41)

and continue calculating

[x2mvn]g◦t
(
x, v, e

ir√
M

)
= [x2m]22m t̃(x)M

M !
√

1− t(x)

(
1 +

t̃kx
k

k!t̃(x)

(
e

ir√
M − 1

))
. (6.42)

In principle, this proof is based on the same ideas as the derivation of Theorem 3.1. That
means, we use Cauchy’s Integral Formula and apply an adopted saddle point method. The
main contribution of the integral corresponds again to the arc satisfying |s| ≤ α = M− 1

2
+δ,

where 0 < δ < 1
6 holds. In this range, the Taylor expansion

M log
(

1 +
t̃kx

k
0e
isk

k!t̃(x0eis)

(
e

ir√
M − 1

))
= M

t̃kx
k
0e
isk

k!t̃(x0eis)

(
e

ir√
M − 1

)
− 1

2
M

(
t̃kx

k
0e
isk

k!t̃(x0eis)

)2 (
e

ir√
M − 1

)2

+O
(
M− 1

2

)
= c0ir

√
M − c0

r2

2
− c1rs

√
M + c20

r2

2
+O

(
M− 1

2
+2δ
)

(6.43)

holds, where we used the notation

ci =
[
∂i

∂ui
t̃kx

k
0e
ku

k! t̃(x0eu)

]
u=0

. (6.44)

Particularly, we get

c0 =
µ

M
and c1 =

µ

M

(
k − 2

1 + ε′

)
. (6.45)

Thus the integral can be rewritten as

α∫
−α

e−κ2
s2

2
M+c0ir

√
M−c0 r22 −c1rs

√
M+c20

r2

2

(
1 +O

(
M− 1

2
+2δ
))

ds

=
1√
M
ec0ir

√
M−c0 r22 +c20

r2

2

α
√
M∫

−α√M

e−κ2
u2

2
−c1ru

(
1 +O

(
M− 1

2
+2δ
))

du. (6.46)
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First, consider the part of the integral containing the big-O term and note that the bound

∣∣∣∣
α
√
M∫

−α√M

e−κ2
u2

2
−c1ruO

(
M− 1

2
+2δ
)
du

∣∣∣∣ ≤ O
(
M− 1

2
+2δ
) ∞∫
−∞

e−κ2
u2

2
−c1ru = O

(
M− 1

2
+2δ
)
du

(6.47)
is valid. Next, we introduce the abbreviatory notation µ =

√
κ2α

√
M+ c1ρ√

κ2
and conclude

that ∞∫
α
√
M

e−
κ2
2
u2−rc1u du =

1√
κ2
e
c21r

2

κ2

∞∫
µ

e−
v2

2 dv (6.48)

holds. Due to Lemma 3.2, the tails are exponentially small. Finally, we conclude that
the main contribution along the arc (−α, α) equals

ec0ir
√
M−c0 r22 +c20

r2

2

∞∫
−∞

e−κ2
u2

2
−c1ru du =

√
2π exp

(
c0ir

√
M − c0

r2

2
+ c20

r2

2
+ c21

r2

2κ2

)
.

(6.49)
It remains to show that the contribution outside this arc is negligible. First consider the
situation outside the range (−η, η), where η denotes a number satisfying 0 < η < 1. Since
x0 is the unique maximum of the modulus of t̃(x) and eir/

√
M − 1 = O

(
1/
√
M
)

holds,
it is clear that a γ > 0 exists such that∣∣∣∣t̃(x0e

is) +
t̃kx

k
0e
isk

k!

(
e

ir√
M − 1

) ∣∣∣∣ ≤ (1− γ)t̃(x0) (6.50)

holds. Hence we conclude that the contribution is exponentially small. For the remaining
range, we consider again a Taylor expansion (cf. (6.43)) and obtain also an exponentially
small contribution.

Nodes in cycles

The distribution of the number of nodes in cycles is rather easy to obtain. Here we do
not take the non-root nodes of trees attached to cycles into account. As usual, we use
the variable w to mark the parameter of interest and conclude the generating function
modifies to

g◦n(x, v, w) =
exp

(
1
2v t̃(2xv)

)√
1− wt(2xv)

. (6.51)

Similar to the calculation of the number of cycles, we apply Theorem 5.5, but again we
have to take care of the slightly modified conditions. In particular, we make use of the
bound ∣∣∣∣∣ 1√

1− eist(x)

∣∣∣∣∣ ≤ 1√|1| − |eist(x)| =
1√
ε′
, (6.52)

that is satisfied on the line of integration. Hence we conclude the contribution outside the
arc (−α, α), is still exponential small, cf. (3.35). Finally, we obtain that the characteristic
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function equals

φn(s) =
[x2mvn]g◦n(x, v, eis)
[x2mvn]g◦n(x, v, 1)

=

√
1− t(x0)

1− eist(x0)

(
1 +O

(
1
m

))
,

=

√
ε′

1− eis(1− ε′)

(
1 +O

(
1
m

))
=
√

ε

1− eis(1− ε)

(
1 +O

(
1
m

))
, (6.53)

and it is straightforward to determine expectation and variance.
Using the series expansion√

ε

1− eis(1− ε)
=
√
ε
∑
k≥0

(−1
2

k

)
(−1)k(1−ε)keisk =

√
ε
∑
k≥0

1·3·5 · · · (2k − 1)
2kk!

(1−ε)keisk,

(6.54)
we also obtain, that the probability, that exactly k nodes are contained in cycles, equals

1·3·5 · · · (2k − 1)
2kk!

√
ε(1− ε)k, (6.55)

in limit.

Nodes in cyclic components

Here, we also count nodes of trees attached to cycles, in contrast to the previous section.
Thus we obtain the generating function

g◦v(x, v, w) =
exp

(
1
2v t̃(2xv)

)√
1− t(2xvw)

. (6.56)

Hence, it is straightforward to calculate mean and variance using the first and second
derivation with respect to w. This completes the proof of Theorem 6.1.

6.3 The bipartite Cuckoo Graph

Next, we draw our attention to bipartite graphs that are related to standard cuckoo
hashing. The following theorem shows us, that the structure of this graph is similar to
the structure of its non-bipartite counterpart. A detailed discussion of the differences and
similarities can be found at the end of this chapter.

Theorem 6.2. Suppose that ε ∈ (0, 1) is fixed and that n = b(1 − ε)mc. Then a la-
belled random bipartite multigraph with 2×m vertices and n edges satisfies the following
properties.

1. The number of unicyclic components with cycle length 2k has in limit a Poisson
distribution Po(λk) with parameter

λk =
1
2k

(1− ε)2k , (6.57)

and the number of unicyclic components has in limit a Poisson distribution Po(λ),
too, with parameter

λ = −1
2

log
(
1− (1− ε)2

)
. (6.58)
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2. Denote the number of tree components with k vertices by tk. Mean and variance of
this random variable are asymptotically equal to

µ = 2m
kk−2(1− ε)k−1ek(ε−1)

k!
, (6.59)

respectively

σ2 = µ− 2me2k(ε−1)k2k−4(1− ε)2k−3(k2ε2 + k2ε− 4kε+ 2)
(k!)2

. (6.60)

Furthermore tk satisfies a central limit theorem of the form

tk − µ

σ
→ N(0, 1). (6.61)

3. The number of vertices contained in cycles has in limit the distribution with char-
acteristic function

φ(s) =

√
1− (1− ε)2

1− e2is(1− ε)2
, (6.62)

and, hence, expectation is asymptotically given by

(1− ε)2

1− (1− ε)2
, (6.63)

and variance by
2(1− ε)2

(1− (1− ε)2)2
. (6.64)

4. Furthermore, the expected value of the number of nodes in unicyclic components is
asymptotically given by

(1− ε)2

ε (1− (1− ε)2)
, (6.65)

and its variance by
(1− ε)2(ε2 − 3ε+ 4)
ε2 (1− (1− ε)2)2

. (6.66)

Proof of Theorem 6.2

Similar to the proof of Theorem 6.1, it is sufficient to consider graphs of G◦m,m,n, the
set of bipartite graphs without complex components, only. Given a random variable ξ,
defined on the set Gm,m,n, we denote its restriction to G◦m,m,n by ξ′ and the corresponding
distribution functions by Fξ resp. Fξ′ . Due to Theorem 4.2 and Lemma 6.1, the relation

|Fξ − Fξ′ | ≤ P(Gm,m,n \G◦m,m,n) = O(1/m) (6.67)

holds.
As usual, we define the ratio

ε′ = 1− n

m
= 1− b(1− ε)mc

m
, (6.68)
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and consider an infinite series of graphs possessing fixed ε′ first (cf. Chapter 4).
The further proof is divided into four parts, each of it proves one of the claimed results

using a generating function approach. Recall the function

g◦(x, v) = exp
(

1
v
t̃(xv, yv) +

1
2

log
1

1− t1(x, y)t2(x, y)

)
=

e
1
v
t̃(xv,yv)√

1− t1(xv, yv)t2(xv, yv)
.

(6.69)
established in Lemma 4.5 that counts graphs without complex components. Again, we
use the technique of introducing a new variable to “mark” the parameter of interest.

Number of Cycles

Lemma 6.6. The moment generating function of the limiting distribution of the number
of cycles resp. the number of cycles of length 2k in a graph of G◦m,m,n is given by

ψc(s) = exp

(
log
(
1− (1− ε′)2

)
2

(1− es)

)(
1 +O

(
1
m

))
, (6.70)

resp.

ψ2k(s) = exp
(
−(1− ε′)2k

2k
(1− es)

)(
1 +O

(
1
m

))
. (6.71)

These results hold pointwise for any fixed real number s, as m→∞.

Proof. We start considering the number of all cycles, hence we attach w once to each
cyclic component, that leads us to the generating function

g◦c (x, y, v, w) = exp
(

1
v
t̃(xv, yv) +

w

2
log

1
1− t1(x, y)t2(x, y)

)
=

exp
(

1
v t̃(xv, yv)

)
(1− t1(xv, yv)t2(xv, yv))w/2

. (6.72)

Clearly, the equation g◦c (x, y, v, 1) = g◦(x, y, v) is valid. Hence, the moment generating
function is given by

ψc(s) =
[xmymvn]g◦(x, y, v, es)
[xmymvn]g◦(x, y, v, 1)

. (6.73)

Again, the number of tree components equals 2m − n, thus the generating function
simplifies to[

xmymvn

(m!)2n!

]
g◦c (x, y, v, e

s) =
n!(m!)2

(2m− n)!
[xmym]

t̃(x, y)2m−n

(1− t1(x, y)t2(x, y))e
s/2
. (6.74)

We continue using Cauchy’s formula and the double saddle point method as described in
Theorem 3.2. Similar to the univariate case, the method is applicable for fixed s. Hence
we further obtain, that the equation

ψc(s) =

√
1− t1(x0, y0)t2(x0, y0)

(1− t1(x0, y0)t2(x0, y0))e
s/2

(
1 +O

(
1
m

))
=
(
1− (1− ε′)2

)(1−es)/2(1 +O
(

1
m

))
(6.75)
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6 The Structure of the Cuckoo Graph

holds, what completes the proof of the first part of the lemma.
The proof of the second part is very similar, we just replace g◦c by the generating

function

g◦k(x, y, v, w) =
exp

(
1
v t̃(xv, yv) + (w − 1) 1

2k t1(xv, yv)kt2(xv, yv)k
)√

1− t1(xv, yv)t2(xv, yv)
. (6.76)

Hereby, w is used to mark cycles of length 2k. Recall that the generating function of a
component containing a cycle of length 2k is given by 1

2k t1(x, y)kt2(x, y)k, see (4.41). We
proceed as usual and yield[

xmymvn

(m!)2n!

]
g◦k(x, y, v, e

s)

=
n!(m!)2

(2m− n)!
[xmym]

exp
(
(es − 1) 1

2k t1(x, y)kt2(x, y)k
)√

1− t1(x, y)t2(x, y)
t̃(x, y)2m−n. (6.77)

Finally, the moment generating function equals

ψk(s) =
[xmymvn]g◦k(x, y, v, e

s)
[xmymvn]g◦k(x, y, v, 1)

= exp
(

(es− 1)
1
2k
t1(x0, y0)kt2(x0, y0)k

)(
1 +O

(
1
m

))
,

(6.78)
and get the claimed results.

Similar to the results obtained for the usual graph, these moment generating functions
correspond to Poisson distributions. Note that we may again replace ε′ by ε, because of
the relation

ε′ = ε+O
(

1
m

)
. (6.79)

Together with Lemma 6.1, this proves the first statement of Theorem 6.2.
Once more, there exists an additive relation between the parameters, illustrated by the

equation
∞∑
k=1

(1− ε)2k

2k
=

1
2

log(1− (1− ε)2). (6.80)

Trees with fixed size

The proof of this result is more complicated, because the parameters depend on m. In
what follows, we make use of the generating function of a bipartite tree component that
possesses exactly k nodes of both types. Because of Lemma 4.2, we can write this function
as

t̃k(x, y) =
∑

m1+m2=k

mm2−1
1 mm1−1

2

xm1

m1!
ym2

m2!
. (6.81)

The following lemmata provide more detailed information about this function.

Lemma 6.7.

t̃k(x0, x0) =
k∑
l=0

lk−l−1(k − l)l−1 xk0
l! (k − l)!

= 2kk−2x
k
0

k!
. (6.82)
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6.3 The bipartite Cuckoo Graph

Proof. We apply Lagrange’s Inversion Formula to obtain the coefficient of xk in t̃(x, x) =
2t(x)− t(x)2, where t(x) denotes the usual tree function that satisfies t(x) = x exp(t(x)).
Because of the previous relation, it is also clear that the number of unrooted bipartite
trees possessing k nodes equals twice the number of unrooted (usual) trees of size k.

Lemma 6.8.[
∂

∂u
t̃k(x0e

u, x0e
v)
]

(0,0)

= xk0

k∑
l=0

lk−l(k − l)l−1 1
l! (k − l)!

= kk−1x
k
0

k!
. (6.83)

Proof. The proof of this lemma is a simple application of Abel’s generalisation of the
Binomial Theorem,

x−1(x+ y + ka)k =
k∑
l=0

(
k

l

)
(x+ la)l−1(y + (k − l)a)k−l, (6.84)

see, e.g., Riordan [1968]. We set x → k, y → k and a → −1 and obtain the claimed
result.

With help of these preliminary results, we are able to prove the following lemma.

Lemma 6.9. The number of tree components with k vertices of a randomly chosen mem-
ber of of G◦m,m,n possesses mean

2m
kk−2(1− ε′)k−1ek(ε

′−1)

k!
+O (1) , (6.85)

and variance

µ− 2me2k(ε
′−1)k2k−4(1− ε′)2k−3(k2ε′2 + k2ε′ − 4kε′ + 2)

(k!)2
+O (1) . (6.86)

Proof. We start introducing the variable w to mark trees possessing exactly k nodes and
obtain the generating function

g◦t (x, y, v, w) =
exp

(
1
v t̃(xv, yv) + (w − 1)t̃k(xv, yv)

)√
1− t1(xv, yv)t2(xv, yv)

, (6.87)

that allows us to calculate the l−th factorial moment as follows

Ml =
[xmymvn]

[
∂l

∂wl
g◦t (x, y, v, w)

]
w=1

[xmymvn]g◦t (x, y, v, 1)
. (6.88)

We further simplify this expression and obtain the equation

[xmymvn]
[
∂l

∂wl
g◦t (x, y, v, w)

]
w=1

= [xmym]

[
∂l

∂wl

(
t̃(x, y) + (w − 1)t̃k(x, y)

)2m−n
(2m− n)!

√
1− t(x, y)

]
w=1

= [x2m]
t̃(x, y)2m−n−l

(2m− n)!
√

1− t(x, y)
(2m− n)l t̃k(x, y)l. (6.89)
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6 The Structure of the Cuckoo Graph

Now, we use once more Theorem 3.2 to calculate an asymptotic expansion. By using
Lemma 6.7, we obtain that the leading term of Ml equals

(2m− n)l

t̃(x0, y0)l
t̃k(x0, y0)l =

ml(1 + ε)l

(1− ε2)l

(
2
kk−2

k!
(1− ε′)ke(ε

′−1)k

)l (
1 +O

(
1
m

))
. (6.90)

Hence, we have completed the proof of the first statement. Moreover, we conclude that
the variance is of order O(m) too, thus its calculation requires to determine the next
term of the asymptotic expansion. Similar to the “simplified” situation, we do this in a
semi-automatic way using Maple and obtain the claimed result. See the corresponding
worksheet for further details.

As in previous calculations, we may of course replace ε′ by ε. Again, it is possible to
establish a central limit theorem.

Lemma 6.10. The number of tree components of size k of a randomly selected member of
G◦m,m,(1−ε′)m minus µ and divided by

√
m(1 + ε′), has in limit the characteristic function

φt(r) = exp
(
− σ2

2m(1 + ε)
r2
)(

1 +O
(

1
m

))
. (6.91)

This equation holds pointwise for any fixed real number r, as m→∞.

Proof. This result is again obtained using an adopted saddle point method, similar to
the proof of Lemma 6.5. In the following, we make again use of the shortened denotation
M = 2m− n = m(1 + ε′). Similar to (6.43), we obtain that the Taylor expansion

M log
(

1 +
t̃k(x0e

is, y0e
it)

t̃(x0eis, y0eit)

(
e

ir√
M − 1

))
= M

t̃k(x0e
is, y0e

it)
t̃(x0eis, y0eit)

(
e

ir√
M − 1

)
− 1

2
M

(
t̃k(x0e

is, y0e
it)

t̃(x0eis, y0eit)

)2 (
e

ir√
M − 1

)2

+O
(
M− 1

2

)
= c00ir

√
M − c00

r2

2
− (c10s+ c01t)r

√
M + c200

r2

2
+O

(
M− 1

2
+2δ
)

(6.92)

holds, if s and t satisfy |s|, |t| ≤ α = M− 1
2
+δ, where 0 < δ < 1

6 holds. Hereby, we used
the notation

cij =
[
∂i

∂ui
∂j

∂vj
t̃k(x0e

u, y0e
v)

t̃(x0eu, y0ev)

]
(0,0)

. (6.93)

In particular, we obtain

c00 =
µ

M
and c10 = c01 =

µ

M

(
k − 2

1 + ε′

)
. (6.94)

Using this Taylor expansion, we proceed as in the proof of Lemma 6.5 respectively The-
orem 3.2.
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6.3 The bipartite Cuckoo Graph

Nodes in cycles

In this part of the proof, we count the number of nodes contained in cycles, but we do not
count the non root nodes of the trees attached to the cycles. Similar to proof of claims
concerning the number of cycles, this result is rather easy to obtain. We make use of the
generating function

g◦n(x, y, v, w) =
exp

(
1
v t̃(xv, yv)

)√
1− w2t1(xv, yv)t2(xv, yv)

. (6.95)

Hence we get the characteristic function

φn(s) =
[xmymvn]g◦n(x, y, v, eis)
[xmymvn]g◦n(x, y, v, 1)

=

√
1− t1(x0, y0)t2(x0, y0)

1− e2ist1(x0, y0)t2(x0, y0)

(
1 +O

(
1
m

))

=

√
1− (1− ε′)2

1− e2is(1− ε′)2

(
1 +O

(
1
m

))
=

√
1− (1− ε)2

1− e2is(1− ε)2

(
1 +O

(
1
m

))
. (6.96)

using the double saddle point method, that is again applicable what can be seen as in the
univariate case. It is further straightforward to calculate asymptotic mean and variance.

Finally we use the series expansion

√
1− (1− ε)2

1− e2is(1− ε)2
=
√

1− (1− ε)2
∑
k≥0

(−1
2

k

)
(−1)k(1− ε)2keis2k

=
√

1− (1− ε)2
∑
k≥0

1·3·5 · · · (2k − 1)
2kk!

(1− ε)2keis2k, (6.97)

to infer that the probability that exactly 2k nodes are contained in cycles equals

1 · 3 · 5 · · · (2k − 1)
2kk!

√
1− (1− ε)2(1− ε)2k, (6.98)

in limit.

Nodes in cyclic components

If we count the number of all nodes contained in cyclic components, the generating
function modifies to

g◦v(x, y, v, w) =
exp

(
1
v t̃(xv, yv)

)√
1− t1(xvw, yvw)t2(xvw, yvw)

. (6.99)

Thus we kook the nodes of trees attached to cycles into account, in contrast to the
previous calculation. Thus, it is still straightforward to calculate asymptotic mean and
variance. This completes the proof of Theorem 6.2.
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6 The Structure of the Cuckoo Graph

6.4 The asymmetric bipartite Cuckoo Graph

It is even possible to adopt the results of the previous section to the case of an asymmetric
bipartite graph. In particular, all results related to the cyclic structure are slightly
modified only. However, the calculation of the distribution of tree components is much
more complicated.

Theorem 6.3. Suppose that c ∈ [0, 1) and ε ∈ (1 − √1− c2, 1) are fixed and that n =
b(1−ε)mc. Then a random labelled bipartite multigraph with, m1 = bm(1+c)c respectively
m2 = 2m−m1 vertices and n edges satisfies the following properties.

1. The number of unicyclic components with cycle length 2k has in limit a Poisson
distribution Po(λk) with parameter

λk =
1
2k

(
(1− ε)2

1− c2

)k
, (6.100)

and the number of unicyclic components has in limit a Poisson distribution Po(λ),
too, with parameter

λ = −1
2

log
(

1− (1− ε)2

1− c2

)
. (6.101)

2. Let T be defined by the equation

T =
k∑
l=0

lk−l−1(k − l)l−1 xl0y
k−l
0

l!(k − l)!
. (6.102)

Similar we define T1 and T2 using the equations

T1 =
k∑
l=0

lk−l(k − l)l−1 xl0y
k−l
0

l!(k − l)!
and T2 =

k∑
l=0

lk−l−1(k − l)l
xl0y

k−l
0

l!(k − l)!
. (6.103)

Hereby, (x0, y0) denotes the saddle point as calculated in Chapter 4 and is hence
given by

x0 =
1− ε

1− c
exp

(
−1− ε

1 + c

)
and y0 =

1− ε

1 + c
exp

(
−1− ε

1− c

)
. (6.104)

Then, the number of tree components with k vertices possesses asymptotic mean

µ =
m(1− c2)

1− ε
T, (6.105)

and asymptotic variance

σ2 = m

(
(T2 − T + T1)2

(−1 + ε)3
c4 − (−T1 + T2)(T2 − 2T + T1)

(−1 + ε)2
c3 +

(T 2
2 + T 2

1 + T )ε2

(−1 + ε)3
c2

+
(−4T1T2 − 2T − 3T 2

1 − 3T 2
2 + 2TT1 + 2TT2)ε

(−1 + ε)3
c2 +

−2T 2 + 2TT2 + 2TT1 + T

(−1 + ε)3
c2

+
(−T1 + T2)(−T2 + 2εT2 − 2T − T1 + 2εT1)

(−1 + ε)2
c+

(−T + T 2
1 + T 2

2 )ε2

(−1 + ε)3

+
(−2TT1 + 2T − T 2

1 + 4T1T2 − 2TT2 − T 2
2 )ε

(−1 + ε)3
+
T 2 + T 2

2 − T + T 2
1 − 2T1T2

(−1 + ε)3

)
.

(6.106)
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6.5 Comparison and conclusion

3. The number of vertices contained in cycles has in limit the distribution with char-
acteristic function

φ(s) =

√√√√ 1− (1−ε)2
1−c2

1− e2is (1−ε)2
1−c2

, (6.107)

and, hence, expectation is asymptotically given by

(1− ε)2

2ε− ε2 − c2
, (6.108)

and variance by
2(1− ε)2(1− c2)
(2ε− ε2 − c2)2

. (6.109)

4. Furthermore, the expected value of the number of nodes in unicyclic components is
asymptotically given by

(1− ε)2(2− ε− c2)
(2ε− ε2 − c2)2

, (6.110)

and its variance by

2c6 + (14 + 3ε2 − 11ε)c4 + (−26 + 31ε− 11ε2 + ε4 − ε3)c2 + (ε2 − 3ε+ 4)(2− ε)2

(2ε− ε2 − c2)4(1− ε)−2
.

(6.111)

Proof. The proof of the statements number 1., 3., and 4. is almost identical to the proof of
the corresponding statements of Theorem 6.2. The only difference is that the symmetric
saddle point satisfying x0 = y0 is replaced by the asymmetric saddle point given in the
theorem. However, this does not influence the actual calculation until the functions are
evaluated. Hence it is sufficient to plug in the modified saddle point in (6.75), (6.78), and
(6.96) to obtain the claimed results.

On the other hand, the calculation concerning the number of trees of given size becomes
much more complicated, although it follows the same principle. This is due to the fact
that there exist no simple closed formula for t̃k(x0, y0) any longer, cf. Lemma 6.7. The
calculation itself is performed using Maple, see the corresponding worksheet for further
information.

6.5 Comparison and conclusion

In this section, we provide numerical results to support our analysis and compare the
graph structures of the different variations of cuckoo hashing. See Chapter 9 for details
on implementation and setup. We start considering tree components because of their
fundamental impact on the behaviour of the algorithms. Note that the tree structure of
the bipartite cuckoo graph possesses the same limiting distribution as the usual cuckoo
graph, that is related to the simplified algorithm. Furthermore, we notice that the num-
ber of isolated nodes increases as the asymmetry increases. Thus, we expect a better
performance of unsuccessful search operations because of the asymmetry.

Tables 6.1 to 6.5 display the average number of trees of size one (i.e. isolated nodes),
two, and five counted during 105 experiments. Each of this tables provides data for
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6 The Structure of the Cuckoo Graph

one fixed load factor (respectively ε). Further, we consider several variations of cuckoo
hashing, including the standard and simplified algorithm, as well as some asymmetric
versions. Recall that higher asymmetry leads to a lower maximum load factor (cf. Chap-
ter 4), hence some small values for ε are invalid for some asymmetric data structures.
From the data given in this tables, we see that our asymptotic results are good approxi-
mations for all investigated settings.

Furthermore, these tables provide the numerically obtained average maximum tree
component. This number is of interest, because the size of the largest tree component
it is a natural bound for the maximum number of steps necessary to insert a key into a
tree component. We notice that this number increases as ε decreases. The results of our
experiments lead to the conjecture, that this parameter possesses again the same asymp-
totic behaviour for both standard and simplified cuckoo hashing. Finally, we observe that
asymmetry leads to a lager maximum tree component.

Next, we draw our attention on the structure of cyclic components. Note that the
corresponding results of Theorem 6.1 and 6.2 are in some sense related, but not identical.
Table 6.6 provides numerical data for the number of nodes in cyclic components and the
number of cycles. Our experiments, using settings m = 5·103 to m = 5·105, show that the
size of the data structure does not have significant influence on this parameters. Because
of this, we do not provide data for different table sizes. From the results presented in the
table, we see again that the asymptotic results obtained in this chapter provide suitable
estimates. We notice that asymmetry leads to an increased number of cycles and nodes
in cyclic components. Furthermore, both parameters are higher if we consider the usual
cuckoo graph instead of the symmetric bipartite version.

We do not provide further numerical results that would require more information such
as the length of the cycle or the number of nodes contained in the cycle itself. This is
caused by the fact that this parameters are not of high relevance for cuckoo hashing, and
that it would require a different implementation of our software, see Chapter 9. However,
we are again interested in the the average size of the maximum cyclic component, because
the number of steps that are required to perform an insertion into a cyclic component
is bounded by twice the size of the maximum cyclic component. It turns out, that
this number increases with the load factor, but usually the size of the maximum tree
component is dominant, except is we consider small tables possessing a high load.
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6 The Structure of the Cuckoo Graph
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6.5 Comparison and conclusion
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6 The Structure of the Cuckoo Graph
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6.5 Comparison and conclusion
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6 The Structure of the Cuckoo Graph
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Chapter 7
Construction Cost

7.1 Introduction

So far, we analysed the failure probability of the various cuckoo hash algorithms and
obtained some information on the structure of the related cuckoo graph. In this chapter,
we investigate the average case behaviour of insertion operations. The cost of a single
insertion is thereby measured by the number of moved keys during this procedure, hence
it equals one plus the number of kick-out operations. Unfortunately, the exact behaviour
is very complex to describe and no exact result is known so far. Hence, we cannot give
an exact result, but we are looking for a suitable upper bound.

7.2 Simplified cuckoo hashing

As usual, we start with the analysis of the simplified algorithm.

Theorem 7.1. Suppose that ε ∈ (0, 1) is fixed. Then, an upper bound for the expected
number of steps to construct a simplified cuckoo hash data structure possessing a table of
size 2m with n = b(1− ε)mc keys is

min
(
C,
− log ε
1− ε

)
n+O(1), (7.1)

where the constant implied by O(1) depends on ε. By performing numerical calculations
it turns out that this bound holds for C = 4.

Proof of Theorem 7.1

Denote the failure probability of a simplified cuckoo hashing attempt by p. Clearly, the
expected number of attempts to construct the data structure is hence given by 1/(1− p).
We have already shown that the equation p = O(1/m) holds. This implies that the
expected number of rehashes to build the hash table, what we denote by N , is in O(1/m).
Furthermore, the additional complexity of a failed attempt is O(n), because we detect an
endless loop in the insertion procedure after at most 2n steps. Therefore, it is only left to
show the claimed bound for the situation where cuckoo hashing succeeds, i.e. the cuckoo
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7 Construction Cost

graph contains only trees and cyclic components. Using this result, we conclude that Ci,
the number of steps required during the i-th unsuccessful construction, is in O(m) hence
the equation

E
N∑
i=1

Ci = EN EC1 = O(1) (7.2)

holds, cf. Devroye and Morin [2003].
Consider the graph just before the insertion of the l-th edge (resp. key) and denote

the node addressed by the first hash function by xl and the second by yl. Recall that a
new key is always placed in xl by the standard insertion procedure. The number of steps
needed to perform this insertion is fully determined by the component containing xl, and
not affected by the component containing yl, unless xl belongs to a cyclic component or
both nodes belong to the same component (including the situation where xl = yl holds).
In the latter case, the new edge creates a cycle. Hence we end up with a component
containing a cycle anyway. But this is a very rare event, because as we know from
Theorem 6.1, that the expected number of nodes contained in cyclic components is finite.
More precisely, Lemma 7.1 shows that the expected cost caused by cyclic components is
constant.

Lemma 7.1. The expected number of all steps performed while inserting elements in
cyclic components is constant.

Proof. Let η denote the random variable that determines the number of nodes contained
in cyclic components. Assume that η equals k. Then, the insertion of each of the k
corresponding keys takes at most 2k steps, because during an insertion, no node is visited
more than twice (cf. Figure 1.6) and each cyclic component holds at most k keys. The
total number of expected steps is therefore bounded by∑

k

2k2P(η = k) = 2Vη + (Eη)2 = O(1), (7.3)

what is constant for all fixed ε because of the results from Theorem 6.1.

The cuckoo graph contains 2m−l+1 trees before the insertion of the l-th node. Denote
the number of steps needed for the insertion in Tree T by ν(T ) and the number of its
nodes by m(T ). The probability, that a tree possessing m(T ) nodes is chosen equals
m(T )/(2m). Using t̃(x), the generating function of unrooted trees defined in (4.5), we
obtain the generating function H(x)/(2m) that counts the maximum insertion cost of a
tree component, weighted by the probability that this component is chosen as follows:

t̃(x) :=
∑
T

xm(T )

m(T )!
=
∑
k

t̃k
xk

k!
, (7.4)

H(x) :=
∑
T

m(T )ν(T )
xm(T )

m(T )!
. (7.5)
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7.2 Simplified cuckoo hashing

Next, we extend this to a set consisting of k such trees:

1
k!

∑
(T1,...,Tk)

(
m(T1)ν(T1) + · · ·+m(Tk)ν(Tk)

)
×
(
m(T1) + · · ·+m(Tk)
m(T1), . . . ,m(Tk)

)
xm(T1)+···+m(Tk)(

m(T1) + · · ·+m(Tk)
)
!

=
1

(k − 1)!
H(x)t̃(x)k−1. (7.6)

Neglecting costs caused by cyclic components, we obtain a result indicating the average
complexity

C(l) :=
1

2m #G◦2m,l−1

2l−1(l − 1)!(2m)!
(2m− l)!

[x2m]
H(x)t̃(x)2m−l√

1− t(x)

=
2m− l + 1

2m
[x2m]H(x)t̃(x)2m−l/

√
1− t(x)

[x2m]t̃(x)2m−l+1/
√

1− t(x)
, (7.7)

for the insertion of the l−th key, cf. (4.9). We proceed similar to former calculations,
using the saddle point method to extract the coefficient. A slight difference is the new
occurring function H(x), but it behaves as a constant factor, so we only need to know
H(x0), what we consider as follows.

We give a first estimate using the tree size m(T ) as upper bound of the parameter
ν(T ), and obtain for real x the inequality

H(x) ≤
∑
T

m(T )2
xm(T )

m(T )!
= x

∂

∂x

(
x
∂

∂x
t̃(x)

)
= x

∂

∂x
t(x) =

t(x)
1− t(x)

. (7.8)

Recall that t(x0) = l−1
m and t̃(x0) = l−1

2m

(
2− l−1

m

)
hold. Altogether, this gives us

C(l) =
(2m− l + 1)H(x0)

2m t̃(x0)

(
1 +O

(
1

2m− l

))
≤ m

m− l

(
1 +O

(
1
m

))
, (7.9)

and further summation over all l leads to

1
n

n∑
l=1

C(l) ≤ 1
n

n∑
l=1

1
1− l

m

(
1 +O

(
1
m

))
→ 1

1− ε

1∫
ε

da

a
=

log 1
ε

1− ε
, (7.10)

as m goes to infinity. Together with Lemma 7.1, this completes the proof of the first
bound of Theorem 7.2.

Next, we try to obtain a better bound using a more suitable estimate for ν(T ). Note
that the selection of the node xl in a tree component, transforms this component into a
rooted tree. The insertion procedure starts at the root and the number of required steps
is bounded by the height of this tree. We introduce the denotations

• tn for the number of rooted trees with n nodes,

• t
[k]
n for the number of rooted trees with n nodes and height less or equal k,
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7 Construction Cost

• and hn for the sum of the heights of all rooted trees with n nodes.

Moreover, we introduce the corresponding generating functions:

t(x) =
∑
n≥0

tnx
n, t[k](x) =

∑
n≥0

t[k]n x
n, h(x) =

∑
n≥0

hnx
n. (7.11)

Due to Flajolet and Odlyzko [1982], we know

t(x)− t[k](x) ∼ 2
δ(x) (1− δ(x))n

1− (1− δ(x))n
, (7.12)

where δ(x) =
√

2(1− ex) +O(1− ex) and further,

h(x) =
∑
k≥0

(
t(x)− t[k](x)

)
∼ −2 log δ(x), (7.13)

around its singularity e−1.
Now, we use the asymptotic approximation of h(x) as upper bound of H(x) and obtain

similar to (7.9) the upper bound

C(l) ≤ − m

l − 1
log
(

2− 2
l − 1
m

e1−
l−1
m

)(
1 +O

(
1
m

))
, (7.14)

for the construction time. This is of course valid only near the singularity, that is for
1− (l−1)/m close to zero. Nevertheless, this result is suitable to prove the second bound
stated in Theorem 7.2. This is because of the fact that the integral

1/2∫
0

− log 2 (1− (1− a)ea)
1− a

da (7.15)

is obviously bounded for ε → 0, in contrary to the corresponding integral of (7.10). See
Figure 7.1 for a plot of the two bounds. It is easy to see, that the second bound is not
valid if ε is not close to 0. Finally, we compute a numerical value for the constant C by
combining this two bounds.

C =
1

1− ε

 1∫
x

da

a
+

x∫
0

− log 2 (1− (1− a)ea)
1− a

da

 . (7.16)

To be on the safe side, we may for instance set x equal to 0.025 and obtain a bound
approximately equal to 4.

7.3 Standard cuckoo hashing

It is straightforward to generalise the ideas that lead us to the previous result. Surpris-
ingly, it turns out that the same bound holds for the classical cuckoo hash algorithm
too.
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Figure 7.1: Bounds for the expected number of steps per insertion, depending on the
momentary value of ε′. The continuous line corresponds to the bound based on the
size of a tree component. Further, the dashed line indicates the bound obtained using
the diameter as estimator, that is accurate for ε′ close to 0 only.

Theorem 7.2. Suppose that ε ∈ (0, 1) is fixed. Then, an upper bound for the expected
number of steps to construct a cuckoo hash data structure possessing two tables of size m
with n = b(1− ε)mc keys is

min
(
C,
− log ε
1− ε

)
n+O(1), (7.17)

where the constant implied by O(1) depends on ε. By performing numerical calculations
it turns out that this bound holds for C = 4.

Proof of Theorem 7.2

Note that all initial considerations stated in the proof of the simplified version can easily
be adopted. For instance, the assertion of Lemma 7.1 holds, however the proof is now
based on Theorem 6.2. The further proof continues in a similar way, though we have to
use bivariate generating functions once more.

Consider the bipartite cuckoo graph before the insertion of the l-st node. At this
moment, it contains exactly 2m − l + 1 tree components. Denote the number of steps
needed for the insertion in tree T by ν(T ) and its number of nodes of first resp. second
type by m1(T ) resp. m2(T ). The probability, that a tree possessing m1 nodes of first
kind is chosen equals m1/m. Using the bivariate generating function t̃(x, y) of unrooted
bipartite trees, we obtain the generating function H(x, y)/m counting the maximum
insertion cost of a tree component times its selection probability as follows:

t̃(x, y) :=
∑
T

xm1(T )ym2(T )

m1(T )!m2(T )!
=
∑
m1,m2

t̃m1,m2

xm1ym2

m1!m2!
, (7.18)

H(x, y) :=
∑
T

m1(T )ν(T )
xm1(T )ym2(T )

m1(T )!m2(T )!
. (7.19)
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Again, we extend this to a set consisting of k such trees:

1
k!

∑
(T1,...,Tk)

(
m1(T1)ν(T1) + · · ·+m1(Tk)ν(Tk)

)(m1(T1) + · · ·+m1(Tk)
m1(T1), . . . ,m1(Tk)

)

×
(
m2(T1) + · · ·+m2(Tk)
m2(T1), . . . ,m2(Tk)

)
xm1(T1)...m1(Tk)(

m1(T1) + · · ·+m1(Tk)
)
!

ym2(T1)...m2(Tk)(
m2(T1) + · · ·+m2(Tk)

)
!

=
1

(k − 1)!
H(x, y)t̃(x, y)k−1. (7.20)

By neglecting costs caused by cyclic components, we get a result indicating the average
complexity

C(l) :=
1

m #G◦m,m,l−1

(m!)2(l − 1)!
(2m− l)!

[xmym]
H(x, y)t̃(x, y)2m−l√
1− t1(x, y)t2(x, y)

=
2m− l + 1

m

[xmym]H(x, y)t̃(x, y)2m−l/
√

1− t1(x, y)t2(x, y)
[xmym]t̃(x, y)2m−l+1/

√
1− t1(x, y)t2(x, y)

(7.21)

for the insertion of the l−th key. As usual we proceed, using the saddle point method to
extract the coefficient. The function H(x, y) behaves as a constant factor, so we need to
calculate respectively estimate H(x0, x0) only, what can be done as follows.

The first estimate is again based on using the size of the tree component, that is now
equal to m1(T ) +m2(T ), as upper bound of the parameter ν(T ). Hence we infer for real
valued x and y the inequality

H(x, y) ≤
∑
T

m1(T ) (m1(T ) +m2(T ))
xm1(T )ym2(T )

m1(T )!m2(T )!
. (7.22)

Further, note that the relation∑
T

m1(T )
xm1(T )ym2(T )

m1(T )!m2(T )!
= x

∂

∂x
t̃(x, y) = t1(x, y) (7.23)

holds. Recall that t1(x, x) equals t(x), so we establish

H(x, x) ≤ x
∂

∂x
t(x) =

t(x)
1− t(x)

=
t1(x, x)

1− t1(x, x)
. (7.24)

From Chapter 4, we know that t(x0, x0) = l−1
m and t̃(x0, x0) = l−1

m

(
2− l−1

m

)
hold. Alto-

gether, this provides us the bound

C(l) =
(2m− l + 1)H(x0, x0)

m t̃(x0, x0)

(
1 +O

(
1

2m− l

))
≤ m

m− l

(
1 +O

(
1
m

))
, (7.25)

and hence we obtain the same first bound as given for the simplified algorithm, see (7.10).
Again, we try to obtain a better result using a more suitable estimate for ν(T ). The

selection of the node xl belonging to a tree component, transforms this component into
a rooted bipartite tree. The insertion procedure starts at the root and the number of
required steps is bounded by the height of this tree. Further, recall that we are only
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interested in the special case x = y. Because of this, we can once more consider usual
(non-bipartite) rooted trees instead.

Hence we use the asymptotic approximation of h(x) as upper bound of H(x, x) and
obtain the upper bound

C(l) ≤ m
− log 2

(
1− e1−l/m l

m

)
l

(
1 +O

(
1
m

))
. (7.26)

Note that this second bound also equals the bound obtained analysing the simplified
algorithm. Thus the remaining details of this proof can be shown as before.

7.4 Asymmetric cuckoo hashing

Finally, we consider the generalised asymmetric data structure. We are still able to
provide an estimate based on the component sizes, similar to the previous results. On
the other hand, the derivation of the second bound is strongly based on the symmetry.
Hence, it is not possible to adopt this result without further knowledge on the height of
rooted bipartite trees.

Theorem 7.3. Suppose that c ∈ [0, 1) and ε ∈ (1 − √
1− c2, 1) are fixed. Then, an

upper bound for the expected number of steps to construct an asymmetric cuckoo hash
data structure possessing two tables of size m1 = bm(1 + c)c respectively m2 = 2m−m1

with n = b(1− ε)mc keys is

1− c

2(1− ε)

(
log

1− c2

2ε(1− ε)− c2
− 2(1 + c)√

1− c2
artanh

ε− 1√
1− c2

)
n+O(1), (7.27)

where the constant implied by O(1) depend on ε.

Proof. As mentioned above, the proof is related to the proofs of Theorem 7.1 and 7.2.
The expected number of steps performed in cyclic components is still in O(1) due to
Theorem 6.3. Further note that (7.22), the generating function H(x, y) counting the
maximum insertion cost of a tree component, still satisfies the inequality

H(x, y) ≤
∑
T

m1(T ) (m1(T ) +m2(T ))
xm1(T )ym2(T )

m1(T )!m2(T )!
. (7.28)

Recall that multiplying the generating function by m1(T ) corresponds to marking a node
of first kind. Hence we obtain

H(x, y) ≤ x
∂

∂x

(
x
∂

∂x
t̃(x, y)

)
+ y

∂

∂y

(
x
∂

∂x
t̃(x, y)

)
= x

∂

∂x
t1(x, y) + y

∂

∂y
t1(x, y)

=
t1(x, y)

1− t1(x, y)t2(x, y)
+

t1(x, y)t2(x, y)
1− t1(x, y)t2(x, y)

=
t1(x, y)(1 + t2(x, y))
1− t1(x, y)t2(x, y)

. (7.29)

From Chapter 4, we know that t1(x0, y0) = l−1
m(1−c) , t2(x0, y0) = l−1

m(1+c) and t̃(x0, y0) =
(l−1)(2m−l+1)
m2(1−c2)

hold. Altogether, this gives us the bound

C(l) =
(2m− l + 1)H(x0, y0)
m(1 + c) t̃(x0, y0)

(
1 +O

(
1

2m− l

))
≤ m(1− c)(m(1 + c) + l − 1)

m2(1− c2)− (l − 1)2

(
1 +O

(
1
m

))
. (7.30)
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Similar to (7.9), we hence obtain the integral

1
1− ε

1∫
ε

(1− c)(2 + c− a)
(2− a)a− c2

da

=
1− c

2(1− ε)

(
log

1− c2

2ε(1− ε)− c2
− 2(1 + c)√

1− c2
artanh

e− 1√
1− c2

)
, (7.31)

that completes the proof.

7.5 An improved insertion algorithm

We propose using a slightly modified insertion algorithm that is described in Listing 7.1.
In contrast to the algorithm described by Pagh and Rodler [2004], we perform an addi-
tional test during the insertion of a key x under following circumstances: If the location
h1(x) is already occupied, but h2(x) is empty, the algorithm places x in the second table.
If both possible storage locations of x are already occupied, we proceed as usual and kick
out the key stored in h1(x). This modification is motivated by two observations:

• We should check if the new key is already contained in the table. If we do not
perform the check a priori and allow duplicates, we have to perform a check after
each kick-out step, what degrades the performance. Further we have to inspect
both possible storage locations to perform complete deletions. Because of this, it
is not recommended to skip this test. Hence we have to inspect h2(x) anyway, and
there are no negative effects on the average search time caused by this modification.

• The probability, that the position h2(x) is empty is relatively high. For the sim-
plified algorithm possessing a load α, this probability equals 1 − α. Moreover, we
expect an even better behaviour for variants based on two tables, because of the
unbalanced load, that is the majority of keys is usually stored in the first table.
Denote the key stored at position h1(x) by y and assume that the corresponding
component is a tree. Note that the previous considerations do not hold for h2(y),
because we have to consider the probability conditioned on the property that the
node belongs to a tree of size greater than one. This tree possesses exactly one free
storage location only.

Experiments show, that this modified insertion algorithm reduces the number of required
steps by about 5 to 10 percent.

7.6 Comparison and conclusion

Note that the bounds established in Theorems 7.1, 7.2, and 7.3 overestimate the number
of required memory accesses per insertion, especially if ε is small. The attained numerical
results, that are given in Table 7.1, show that the expected performance of both standard
and simplified cuckoo hashing is by far below this upper bound. See Chapter 9 for details
on implementation and setup. We notice that the performance depends on the size of the
data structure, except for sparse tables. More precisely, the construction requires fewer
steps on average if the size of the data structure increases.
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Listing 7.1: Optimal insertion for cuckoo hashing.
function i n s e r t ( s )

i f tab l e1 [ h1 ( s ) ] == used
i f tab l e1 [ h1 ( s ) ] == s

return true
end i f
i f tab l e2 [ h2 ( s ) ] != used

tab l e2 [ h2 ( q ) ] = s
return true

end i f
i f tab l e2 [ h2 ( s ) ] == s

return true
end i f

end i f
for i from 1 to maxloop do :

p = tab l e1 [ h1 ( s ) ]
t ab l e1 [ h1 ( s ) ] = s
i f p != used

% s did not k i c k out an element
return true

end i f
s = tab l e2 [ h2 (p ) ]
t ab l e2 [ h2 (p ) ] = p
i f s != used

% p did not k i c k out an element
return true

end i f
end for
% rehash requ ired , i n s e r t i o n not p o s s i b l e
return fa l se

end function
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Further, we notice that the simplified version offers the best average performance for
all investigated settings, compared to all other variants of cuckoo hashing. This seems to
be related to the higher probability of hitting an empty cell. Similarly, the asymmetric
data structure offers better performance as the asymmetry increases, as long as we do
not reach the critical load factor. However, the construction takes more steps on average
for an asymmetric table close to its maximum fill ratio than for the standard algorithm
possessing the same load factor.

Figure 7.2 displays the bound given in Theorem 7.3 for asymmetry factors c = 0 (i.e.
the standard algorithm), c = 0.2, c = 0.3, and c = 0.4. We conclude that this upper
bound shows a similar behaviour as the actual performance of insertions described above.
That means that increasing asymmetry decreases the corresponding value for small loads,
but the effect reverses near the critical fill ratio.

Next, we compare these results to the average number of memory accesses of an in-
sertion into a table using a standard open addressing algorithm. Note that we do not
consider the expected number of steps that are required to insert an element into a table
holding a given number of keys, as it is often done for this algorithms. In contrast, we
construct a whole table holding n keys, count the total number of required steps, and
divide it by n. For linear probing and double hashing, these numbers equal the expected
number of steps of an successful search. This is a well known parameter. Hence we
provide the results of this analysis only, instead of performing experiments using this al-
gorithms. It can be seen by our attained data, that the performance of simplified cuckoo
hashing is approximately equal to the expected number of steps using linear probing and
thus slightly higher than using double hashing.

It is also of interest to consider algorithms based on open addressing that try to speed
up successful searches by more complicated insertion procedures that require additional
steps. In particular, Brent’s variation of double hashing is a popular algorithm that
follows this approach. See Chapter 1 for a brief description and references. Unfortunately,
no exact analysis of the behaviour of the insertion procedure of this algorithm is known.
Hence, we provide the numerically obtained number of different memory cells inspected
during an insertion as a measure of the insertion cost. Hereby, we include the additional
memory cells, that are inspected during an initial search operation, that checks if the key is
already contained in the data structure. However, note that the standard implementation
of this insertion procedure does not use additional memory to hold keys that are accessed
more than once, cf. Gonnet and Baeza-Yates [1991]. Thus, it is required to load the
corresponding entries of the table again, but it is very likely that this repeated accesses
do not produce a cache-miss and, hence, we do not expect high additional expenses, if
the algorithm is running on a modern computer, cf. Heileman and Luo [2005]. From the
data given in Table 7.1, we observe that the cost of an insertion using Brent’s variation
resp. simplified cuckoo hashing is approximately equal for large data structures, while
the cuckoo hash algorithm takes a bit more steps for small tables.

Furthermore, the expected length of the longest insertion sequence is a practically
relevant attribute, because it is a measure of the expected worst case. Table 7.2 shows
the average of the maximum number of steps required during the construction of the
whole table. For the two table version of cuckoo hashing, we notify that this number
increases if either the size of the data structure or the asymmetry increases. Further, we
observe that the standard algorithm offers a slightly better behaviour than the simplified
version. If we compare these results to the average size of the maximum tree resp. cyclic
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Figure 7.2: Bounds for the expected number of steps per insertion using asymmetric
cuckoo hashing according to Theorem 7.3, depending on the momentary value of ε′. The
depicted curves correspond to asymmetry factors c = 0 (i.e. the standard algorithm),
c = 0.2, c = 0.3, and c = 0.4 from left to right.

component that is given in the Tables 6.1 to 6.6, we observe that the numbers of Table 7.2
are by far below the maximum component sizes. That means, that the insertion procedure
involves a limited part of the component only, even in the expected worst case.

Gonnet [1981] provides an asymptotic approximation of the length of the longest prob-
ing sequence for double hashing and linear probing, but it turns out that this results
do not provide suitable estimates for the table sizes considered here. Hence we provide
numerically obtained data for this algorithms too. We observe that double hashing offers
the best performance under this aspect. For relatively sparse tables, cuckoo hash algo-
rithms exhibit the next best behaviour, followed by linear probing and Brent’s insertion
algorithm. But we notice that the cuckoo hash algorithms possess the highest expected
worst case otherwise.

Finally, Table 7.3 provides the maximum number of steps that occurred in an insertion
operation in the whole sample of size 105. Using this data, we are able to choose suitable
values for the maximum number of kick-out steps that is performed during an insertion,
i.e. the choice of the parameter maxloop of Algorithm 7.1. Recall that this variable
is used to stop insertion procedures, that are very unlikely to succeed. On the other
hand, the failure rate increases if this parameter is to small. Hence, we suggest to leave
a margin, especially for all settings that exhibit a low failure rate.
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m ε = 0.7 ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04
standard cuckoo hashing

500 1.1382 1.2727 1.3972 1.5515 1.6782 1.7788
5000 1.1389 1.2718 1.3780 1.4759 1.5753 1.6815

50000 1.1390 1.2717 1.3749 1.4472 1.4982 1.5571
500000 1.1390 1.2717 1.3746 1.4424 1.4789 1.5055
bound 1.1889 1.5272 2.0118 2.5584 2.9930 3.3530

asymmetric cuckoo hashing, c = 0.1
500 1.1269 1.2530 1.3746 1.5335 1.6692 1.7685

5000 1.1275 1.2518 1.3548 1.4529 1.5662 1.6786
50000 1.1275 1.2518 1.3506 1.4220 1.4769 1.5500

500000 1.1275 1.2518 1.3503 1.4166 1.4539 1.4840
asymmetric cuckoo hashing, c = 0.2

500 1.1171 1.2366 1.3614 1.5419 1.7021 1.8299
5000 1.1177 1.2354 1.3363 1.4555 1.6144 1.7931

50000 1.1178 1.2352 1.3316 1.4070 1.4923 1.6450
500000 1.1178 1.2352 1.3311 1.3991 1.4438 1.5112

asymmetric cuckoo hashing, c = 0.3
500 1.1091 1.2240 1.3588 1.6005 1.8381 -

5000 1.1096 1.2218 1.3263 1.4988 1.8415 -
50000 1.1096 1.2215 1.3181 1.4162 1.7007 -

500000 1.1096 1.2214 1.3171 1.3918 1.5367 -
asymmetric cuckoo hashing, c = 0.4

500 1.1021 1.2141 1.3829 1.7749 - -
5000 1.1025 1.2111 1.3279 1.7592 - -

50000 1.1026 1.2104 1.3114 1.6090 - -
500000 1.1026 1.2104 1.3092 1.4666 - -

simplified cuckoo hashing
500 1.0836 1.1979 1.3246 1.4669 1.5754 1.6591

5000 1.0840 1.1967 1.3093 1.4106 1.4994 1.5873
50000 1.0841 1.1967 1.3061 1.3881 1.4424 1.4950

500000 1.0841 1.1967 1.3059 1.3851 1.4285 1.4584
bound 1.1889 1.5272 2.0118 2.5584 2.9930 3.3530

linear probing
asympt. 1.0882 1.2143 1.3333 1.4091 1.4434 1.4615

double hashing
asympt. 1.0835 1.1889 1.2771 1.3285 1.3508 1.3623

double hashing using Brent’s refinement
997 1.0906 1.2207 1.3380 1.4097 1.4409 1.4574

10007 1.0910 1.2208 1.3378 1.4087 1.4400 1.4564
100003 1.0911 1.2211 1.3382 1.4094 1.4407 1.4571

1000003 1.0910 1.2211 1.3382 1.4093 1.4406 1.4570

Table 7.1: Average number of steps per insertion. We use random 32-bit integer keys and
hash functions based on Carter and Wegman’s universal family for cuckoo hashing,
and consider the average taken over ·105 successful constructed tables. Furthermore,
the table depicts the asymptotic bound of Theorem 7.1 resp. 7.2 and the well known
asymptotic results of linear probing and double hashing. Finally, we provide numerical
data of the behaviour of Brent’s algorithm using hash functions based on the division
method. This functions require that the table size equals a prime number. Note that
the parameter m equals the total number of memory cells for Brent’s algorithm.
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m ε = 0.7 ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04
standard cuckoo hashing

500 2.355 4.195 7.424 10.886 13.215 14.710
5000 3.230 7.032 13.141 20.944 27.511 32.608

50000 4.519 10.321 20.105 33.704 46.577 58.502
500000 5.974 13.917 27.912 48.884 70.052 90.984

asymmetric cuckoo hashing, c = 0.1
500 2.338 4.166 7.424 10.968 13.366 14.909

5000 3.201 7.005 13.231 21.334 28.402 33.955
50000 4.474 10.337 20.281 34.578 48.660 62.207

500000 5.933 13.957 28.283 50.433 73.763 98.096
asymmetric cuckoo hashing, c = 0.2

500 2.324 4.188 7.602 11.502 14.188 16.013
5000 3.199 7.081 13.725 23.094 31.882 39.382

50000 4.475 10.505 21.230 38.068 57.242 79.108
500000 5.954 14.235 29.721 56.157 89.122 133.566

asymmetric cuckoo hashing, c = 0.3
500 2.323 4.274 8.054 12.715 16.126 -

5000 3.210 7.291 14.844 27.187 41.325 -
50000 4.522 10.881 23.222 47.033 87.219 -

500000 6.032 14.793 32.846 71.476 155.553 -
asymmetric cuckoo hashing, c = 0.4

500 2.329 4.420 8.927 15.230 - -
5000 3.233 7.674 17.047 38.502 - -

50000 4.610 11.559 27.350 79.395 - -
500000 6.189 15.827 39.403 138.019 - -

simplified cuckoo hashing
500 2.892 5.386 8.844 12.600 15.134 16.792

5000 4.251 8.331 14.750 22.876 29.830 35.348
50000 5.745 11.717 21.780 35.850 49.200 61.634

500000 7.329 15.340 29.636 51.045 72.865 94.370
linear probing

997 3.089 5.589 8.127 9.869 10.696 11.136
10007 4.552 8.530 12.733 15.670 17.077 17.819

100003 6.148 11.811 17.941 22.239 24.349 25.463
1000003 7.857 15.314 23.486 29.320 32.117 33.612

double hashing
997 2.805 4.399 5.695 6.457 6.807 6.967

10007 3.878 6.063 7.864 8.952 9.420 9.675
100003 4.977 7.792 10.129 11.538 12.166 12.482

1000003 6.102 9.546 12.425 14.168 14.953 15.347
double hashing using Brent’s refinement

997 3.496 5.835 7.636 8.690 9.158 9.407
10007 5.027 7.894 10.287 11.725 12.345 12.695

100003 6.444 9.934 12.876 14.735 15.553 15.978
1000003 7.636 11.882 15.511 17.685 18.688 19.208

Table 7.2: Average maximum number of steps of an insertion. We use the same setup as
described in Table 7.1. All entries of the table give the average taken over 105 successful
constructed tables. Note that the parameter m equals the total number of memory
cells for non-cuckoo hashing algorithms.
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m ε = 0.7 ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04
standard cuckoo hashing

500 13 29 59 77 87 83
5000 11 39 87 125 191 183

50000 11 41 79 165 273 357
500000 15 37 75 227 351 611

asymmetric cuckoo hashing, c = 0.1
500 13 31 59 77 79 91

5000 11 27 89 125 179 219
50000 13 41 73 227 285 345

500000 13 33 87 173 307 477
asymmetric cuckoo hashing, c = 0.2

500 9 35 63 81 87 93
5000 11 35 85 153 229 223

50000 11 35 91 177 363 433
500000 15 37 83 233 453 697

asymmetric cuckoo hashing, c = 0.3
500 13 29 51 97 97 -

5000 13 29 83 187 215 -
50000 13 37 91 273 497 -

500000 15 35 97 343 853 -
asymmetric cuckoo hashing, c = 0.4

500 11 33 75 113 - -
5000 11 39 107 237 - -

50000 13 39 171 461 - -
500000 19 41 151 779 - -

simplified cuckoo hashing
500 11 29 63 77 90 95

5000 13 29 74 165 198 190
50000 14 34 89 169 327 413

500000 16 34 83 219 368 530

Table 7.3: Maximum number of steps of an insertion during 105 successful constructed
tables. We use random 32-bit integer keys and hash functions based on Carter and
Wegman’s universal family.
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Chapter 8
Search

8.1 Introduction

Finally, we consider the average cost of both successful and unsuccessful search operations.
Similar to the analysis of insertion operations, we count the number of memory cells
accessed during the operation. Of course, we may perform a search in at most two steps.
However, we are able to perform a lot of search operations in one step only under certain
circumstances. Assume that we always start a search after a key x at the position h1(x).
As a consequence, a successful search takes one step only, if the cell determined by the first
hash function holds x. Further, it is guaranteed that a search operation is unsuccessful,
if the position indicated by h1 is empty, as long as our data structure meets the following
rules:

• We always try to insert a key using h1 first, the second hash function is used only
if the inspected cell is already occupied.

• If we delete an element of the first table resp. addressed by the first hash function, it
is not allowed to mark the cell “empty” instead we have to use a marker “previously
occupied”. This is similar to the deletions in hashing with open addressing, cf.
Knuth [1998].

Listing 8.1 gives the details of the search algorithm. A C++ version of this algorithm
can be found in Appendix A and it is also included in the attached CD-ROM.

Similar to the analysis of linear probing and uniform probing in Knuth [1998], our
analysis considers hashing without deletions. Note that it is not possible to delete a key
such that the table ends up as it would have been if this key had never been inserted,
except if we are willing to inspect the whole data structure. Because of this, deletions are
likely to increase the number of keys stored using the second hash function what decreases
the performance of search operations. However, it should be clear that our results can be
applied to the situations where deletions are very rare.

Knuth [1998] suggests the usage of ideas originally developed for garbage collection
to increase the performance of hash tables based on open addressing, if it is necessary
to allow deletions. This suggestions are helpful for cuckoo hashing too. One might
implement a counter telling how many keys try to occupy a given position. Whenever
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Listing 8.1: Optimal search for cuckoo hashing.
function search ( s )

i f tab l e1 [ h1 ( s ) ] == s
return true

end i f
i f tab l e1 [ h1 ( s ) ] == empty

return fa l se
end i f
i f tab l e2 [ h2 ( s ) ] == s

return true
end i f
return fa l se

end function

this counter equals one, we might delete the key completely. Furthermore, it is a good
idea to parse the whole table trying to move keys back to its primary position whenever
a lot of “previously occupied” markers are present.

We want to emphasise that the notations used in the analysis of hashing with open
addressing are a little bit different so, we state the results in terms of the load factor
α = n/(2m). As a consequence, the results can be directly compared.

8.2 Simplified cuckoo hashing

Similar to the previous chapters, we start considering the simplified algorithm, although
the analysis is in some sense more complicated. Because of this, we can not provide the
exact behaviour of successful search operations in contrast to the other variants of cuckoo
hashing.

Theorem 8.1. Suppose that α ∈ (0, 1/2) is fixed and consider a successful simplified
cuckoo hash of n = b2mαc data points into a table of size 2m without deletions. Then
the expected number of inspected cells Cn of an successful search satisfies the relation

2− 1− e−α

α
+O (m−1

) ≤ Cn ≤ 2− 1− e−2α

2α
+O (m−1

)
. (8.1)

Furthermore, the expected number of steps of an unsuccessful search is given by

1 + α, (8.2)

and the variance equals
α(1− α). (8.3)

Proof. The number of steps of an unsuccessful search is determined by the number of
empty cells which equals 2m − n. Thus, we need one step only with probability 1 − α
and two steps otherwise.

Consider an arbitrary selected cell z of the first table. The probability, that none of the
randomly selected values h1(x1), . . . , h1(xn) equals z is given by p = (1− 1/(2m))n. Let
ps denote the probability that z is not addressed by the first hash function, conditioned
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z x y
x y z

h1 2 5 2
h2 5 7 5

Figure 8.1: Additional search costs in simplified cuckoo hashing. Two memory cells are
accessible by h1 for the current data, but only the key z can be found in a single step.

on the property that the construction of the hash table succeeds, and let pa denote the
probability that z is not addressed by the first hash function, conditioned on the property
that the construction of the hash table is unsuccessful. By the law of total probability,
we have p = ps + pa. Because of Theorem 4.1, the relation pa = O(m−1) holds. Thus,
we obtain that the probability that an arbitrary selected cell is not a primary storage
location, equals

ps = (1− 1/(2m))n +O (m−1
)

= e−α +O (m−1
)
. (8.4)

Hence, 2m(1 − ps) is the expected number of cells accessed by h1 if the table holds n
keys. It is for sure that each of this memory slots stores a key, because an insertion always
starts using h1. However, assume that the primary position of one of this keys y equals
the secondary storage position of an other key x. If x is kicked-out, it will subsequently
kick-out y. Thus, the total number of steps to find all keys increases. Figure 8.1 gives an
example of such a situation.

Let q denote the probability, that a cell z, which is addressed by both hash functions,
is occupied by a key x such that h1(x) = z holds. Then, the expected number of keys
reachable with one memory access equals

2m
(
(1− ps)ps + (1− ps)2q

)
. (8.5)

By setting q = 1 and q = 0.5 we get the claimed results. The latter value corresponds to
a natural equilibrium.

8.3 Standard cuckoo hashing

Of course, the standard algorithm corresponds to asymmetric cuckoo hashing possessing a
coefficient of asymmetry c equal to zero. In contrast to the analysis given in the previous
sections, the analysis of the search performance of the asymmetric variant is similarly
difficult to the standard algorithm. Hence, there it is obsolete to provide a separate
proof. To make the results more approachable for the reader, we present the results
separately.

Theorem 8.2. Suppose that α ∈ (0, 1/2) is fixed and consider a successful cuckoo hash
of n = b2mαc data points into two tables of size m without deletions. Then, the expected
number of inspected cells of an successful search is asymptotically given by

2− 1
2α
(
1− e−2α

)
+O (m−1

)
, (8.6)
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and its variance by

1
2α
(
1− e−2α

)− ( 1
2α
(
1− e−2α

))2

+ O(1). (8.7)

Furthermore, the expected number of steps of an unsuccessful search is asymptotically
given by

2− e−2α +O (m−1
)
, (8.8)

and the variance by
e−2α − e−4α +O (m−1

)
. (8.9)

Proof. See proof of Theorem 8.3.

8.4 Asymmetric cuckoo hashing

Theorem 8.3. Suppose that c ∈ [0, 1) and α ∈ (0,
√

1− c2/2) are fixed and consider a
successful asymmetric cuckoo hash of n = b(1 − ε)mc data points into two tables of size
m1 = bm(1+c)c respectively m2 = 2m−m1 without deletions. Then, the expected number
of inspected cells of an successful search is asymptotically given by

2− 1 + c

2α

(
1− e−2α/(1+c)

)
+O (m−1

)
, (8.10)

and its variance by

1 + c

2α

(
1− e−2α/(1+c)

)
−
(

1 + c

2α

(
1− e−2α/(1+c)

))2

+ O(1). (8.11)

Furthermore, the expected number of steps of an unsuccessful search is asymptotically
given by

2− e−2α/(1+c) +O (m−1
)
, (8.12)

and the variance by
e−2α/(1+c) − e−4α/(1+c) +O (m−1

)
. (8.13)

Proof. Consider an arbitrary selected cell z contained in the first table. The probability,
that none of the randomly selected values h1(x1), . . . , h1(xn) equals z is given by p =(
1− bm(1 + c)c−1

)n. Let ps denote the probability that z is empty, conditioned on the
property that the construction of the hash table succeeds. Let pa be the probability
that z is empty, conditioned on the property that the construction of the hash table is
unsuccessful. By the law of total probability, we have p = ps + pa. Using Theorem 4.3,
we see that the relation pa = O(m−1) holds. Thus, we obtain

ps =
(
1− bm(1 + c)c−1

)n +O (m−1
)

= e−2α/(1+c) +O (m−1
)
. (8.14)

This equals the probability that the first inspected cell during a search is empty. The
remaining unsuccessful searches take exactly two steps. Hence it is straightforward to
calculate expectation and variance.

Similarly, we further obtain, that the expected number of occupied cells of the first table
equals bm(1 + c)c (1− e−2α/(1+c)

)
+ O(1). This gives us the expected number of keys
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which might be found in a single step, while the search for any other key takes exactly
two steps. Using this, it is straightforward to calculate the expectation, however we
require a different approach to determine the variance. Instead of considering a successful
constructed data structure, we assume that each of the mn

1 sequences of hash values of
h1 is equally likely. Note that we obtain the same distribution in limit because of to
Theorem 4.3 and Lemma 6.1. Similar to the analysis of hashing with chaining (see, e.g.,
Knuth [1998]) we use the generating function

Pn(z) =
n∑
k=0

(
n

k

)
1
mk

1

(
1− 1

m1

)n−k
zk =

(
1 +

z − 1
m1

)n
. (8.15)

If we are interested in the second moment M2, we attach a “weight” of 4k − 3 + 3δk,0 to
a list of length k where δk,0 denotes Kronecker’s delta and obtain

M2 =
1

nmn
1

∑
k1+···+km1=n

(
n

k1, . . . , km1

)(
4k1 − 3 + 3δk1,0 + · · ·+ 4km1 − 3 + 3δkm1 ,0

)

=
m1

n

n∑
k=0

(4k − 3 + 3δk,0)
(
n

k

)
1
mk

1

(
1− 1

m1

)n−k
=
m1

n

(
4P ′n(1)− 3Pn(1) + 3Pn(0)

)
= 4− 3

m1

n

(
1−

(
1− 1

m1

)n)
, (8.16)

which allows us to calculate the variance.

8.5 Comparison and Conclusion

We start comparing the obtained asymptotic results. Figure 8.2 depicts the asymptotic
behaviour of a successful search, depending on the load factor α. For simplified cuckoo
hashing, we plot both bounds together with a numerically obtained curve. We conclude
that the simplified algorithm offers the best performance, even if we compare it to linear
probing and double hashing.

The good performance of successful search operations of cuckoo hash algorithms holds
due to the fact, that the load is unbalanced, because the majority of keys will be usually
stored using the first hash function. This explains the increased performance of the
asymmetric variant too. However, recall that the algorithm possessing an asymmetry
c = 0.3 allows a maximum load factor of approximately .477 according to Theorem 4.3,
hence the corresponding curve stops at this load factor. Numerical results show that the
failure rate increases dramatically if this bound will be exceeded.

Further, Figure 8.3 shows a plot according to an unsuccessful search. As an important
result, simplified cuckoo hashing offers again the best performance. Compared to stan-
dard cuckoo hashing and the asymmetric algorithm, this can be explained by the higher
probability of hitting an empty cell. Again, this is related to the fact, that the load is
unbalanced, because the chance of hitting an empty cell in the first table of a variant
using two separate tables is less than the overall percentage of empty cells. Compared
to linear probing and double hashing, the chance of hitting a non-empty cell in the first
step is identical. However, simplified cuckoo hashing needs exactly two steps in such a

105



8 Search

case, but there is a non-zero probability that the two other algorithms will need more
than one additional step.

Again, we provide numerical results, which can be found in Table 8.1. Since the cost
of an unsuccessful search is deterministic for the simplified version and closely related to
the behaviour of the successful search otherwise, we concentrate on the successful search.
From the results given in the table, we find that our asymptotic results can be interpreted
as a good approximation, even for hash tables of small size. Furthermore, the size of the
tables does not seem to have hardly any influence on the behaviour of successful searches.

In particular, we notice that the simplified algorithm offers the best performance of
all variants of cuckoo hashing for all investigated settings. This can be explained by the
increased number of keys accessible in one step, although this increase is not guaranteed
because of the effect described in Figure 8.1. However, our experiments show that the
influence is noticeable, but not dramatic. As long as α is small, the actual behaviour is
close to the lower bound of Theorem 8.1. Additionally, we compare the performance of
simplified cuckoo hashing and the variants of double hashing offering improved retrieval
power, namely Brent’s variation and binary tree hashing. See Chapter 1 for a brief
description of these algorithms and references. Note that the behaviour of the latter
two algorithms is almost indistinguishable for such small load factors. Hence we do not
provide results for both algorithms in Table 8.1. From our numerical results, we see that
these three algorithms behave approximately equal regarding successful searches.

Concerning asymmetric cuckoo hashing, these results verify, that the performance of
search operations increases, as the asymmetry increases. However, the simplified algo-
rithm offers even better performance without the drawbacks of a lower maximal fill ratio
and increasing failure probability, cf. Chapter 4.

Note that load balancing implemented by starting an insertion at a random selected
table instead of always choosing the first, would decrease the performance of unsuccessful
searches, although it would increase the number of empty cells of the first table. This is
due to the fact, that this change requires the inspection of the second storage location,
if the first is found empty. Furthermore, this modification would further have a negative
influence on the performance for finding inserted keys and is therefore not recommended.

We conclude that simplified cuckoo hashing offers the best average search performance
over all algorithms considered in this thesis, for all feasible load factors. Thus it is
highly recommendable to use this variant instead of any other version of cuckoo hashing
discussed here.
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Figure 8.2: Comparison of successful search. The curves are plotted from the results of
Theorem 8.1 resp. 8.2 together with the well known asymptotic results of the standard
hash algorithms. For simplified cuckoo hashing, the grey area shows the span between
the upper and lower bound. The displayed curve is obtained numerically with tables
containing 105 cells and sample size 5·104.
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Figure 8.3: Comparison of unsuccessful search. The curves are plotted from the results of
Theorem 8.1 resp. 8.2 together with the well known asymptotic results of the standard
hash algorithms.
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m ε = 0.7 ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.06 ε = 0.04
standard cuckoo hashing

500 1.1353 1.2474 1.3112 1.3400 1.3510 1.3563
5000 1.1360 1.2479 1.3116 1.3406 1.3517 1.3571

50000 1.1360 1.2480 1.3116 1.3406 1.3517 1.3572
500000 1.1361 1.2480 1.3117 1.3406 1.3517 1.3572

asympt. 1.1361 1.2480 1.3117 1.3406 1.3517 1.3572
asymmetric cuckoo hashing, c = 0.1

500 1.1241 1.2287 1.2890 1.3164 1.3269 1.3320
5000 1.1247 1.2292 1.2894 1.3170 1.3276 1.3328

50000 1.1248 1.2292 1.2894 1.3171 1.3277 1.3329
500000 1.1248 1.2292 1.2894 1.3171 1.3277 1.3329

asympt. 1.1248 1.2292 1.2894 1.3171 1.3277 1.3329
asymmetric cuckoo hashing, c = 0.2

500 1.1145 1.2125 1.2695 1.2958 1.3057 1.3105
5000 1.1151 1.2130 1.2701 1.2964 1.3065 1.3115

50000 1.1152 1.2131 1.2701 1.2965 1.3066 1.3116
500000 1.1152 1.2131 1.2701 1.2965 1.3067 1.3117

asympt. 1.1152 1.2131 1.2701 1.2965 1.3067 1.3117
asymmetric cuckoo hashing, c = 0.3

500 1.1064 1.1984 1.2526 1.2774 1.2868 -
5000 1.1069 1.1990 1.2532 1.2783 1.2879 -

50000 1.1070 1.1990 1.2532 1.2784 1.2881 -
500000 1.1070 1.1990 1.2532 1.2784 1.2881 -

asympt. 1.1070 1.1990 1.2532 1.2784 1.2881 -
asymmetric cuckoo hashing, c = 0.4

500 1.0994 1.1862 1.2376 1.2610 - -
5000 1.0998 1.1867 1.2382 1.2621 - -

50000 1.0999 1.1867 1.2383 1.2623 - -
500000 1.0999 1.1867 1.2383 1.2623 - -

asympt. 1.0999 1.1867 1.2383 1.2623 - -
simplified cuckoo hashing

500 1.0750 1.1553 1.2163 1.2505 1.2651 1.2723
5000 1.0755 1.1557 1.2167 1.2516 1.2666 1.2742

50000 1.0756 1.1558 1.2168 1.2516 1.2667 1.2745
500000 1.0755 1.1558 1.2168 1.2516 1.2667 1.2745

lower bound 1.0714 1.1361 1.1758 1.1947 1.2021 1.2058
upper bound 1.1361 1.2480 1.3117 1.3406 1.3517 1.3572

linear probing
asympt. 1.0882 1.2143 1.3333 1.4091 1.4434 1.4615

double hashing
asympt. 1.0835 1.1889 1.2771 1.3285 1.3508 1.3623

double hashing using Brent’s refinement
asympt. 1.0759 1.1573 1.2179 1.2510 1.2649 1.2721

Table 8.1: Average number of steps of a successful search. We use random 32-bit integer
keys, hash functions based on Carter and Wegman’s universal family, and consider the
average taken over ·105 successful constructed tables. Furthermore, the table depicts
the asymptotic results of Theorem 8.1 resp. 8.3 and the well known asymptotic re-
sults of algorithms based on open addressing. See Chapter 9 for further details on
implementation and setup.
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Chapter 9
Experimental Settings

The major part of the analysis performed in the previous chapters leaded to asymptotic
approximations instead of exact results. Consequently, one might argue that the actual
behaviour of practical relevant settings might be different, because the parameters are to
“small”. To overcome this weak point, we provide numerically obtained results whenever
possible. Hence, we can show that the asymptotic approximations provide suitable esti-
mations. Further, our analysis of the construction cost of cuckoo hashing provides just
an upper bound. We give numerical results to investigate the accuracy of this bound and
to obtain a reliable estimation for the actual costs. Finally, the results provides a form of
informal justification of our results. It is a good idea to check the calculation iteratively
if the obtained results seem to be totally different.

The relevant numerical data for each chapter can be found at its end, together with
a discussion of the results. This chapter does not focus on the results itself, but on the
methods which are used to obtain them.

All numerical data are obtained using C++ programs on a workstation equipped with
two Intel Xeon 5150 2.66Ghz dual core processors and 4GB RAM. The attached CD-
ROM provides all relevant source codes. The most important listings can also be found
in Appendix A. In principle we use two different kinds of programs, that are described in
the next sections.

9.1 A random graph growth process

The first kind of program simulates the growth of the bipartite or usual cuckoo graph. It
is based on an algorithm similarly constructed to the usual implementation of Kruskal’s
minimum spanning tree algorithm, see, e.g., Cormen et al. [2001]. More precisely, we use
a dynamic disjoint-set data structure to represent the connected components of the graph.
Each set of this data structure corresponds to a unique component of the graph and it
consists of the nodes contained in the corresponding component. Furthermore, each set
is uniquely determined by an arbitrary selected representative, that is one member of the
set. This information is internally stored in an array p. Additionally, we use a second
array named cyclic , to store flags, that indicate if the corresponding component contains
a cycle. The process starts with a graph consisting of isolated nodes only, hence each
node is represented by itself. We continue successively inserting new randomly chosen
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Listing 9.1: Dynamic disjoint-set data structure.
function make set (u)

p [ u ] = u
end function

function f i n d s e t (u)
i f u != p [ u ]

u = f i n d s e t (p [ u ] )
end i f
return u

end function

function union (u , v )
p [ f i n d s e t ( v ) ] = f i n d s e t (u)

end function

edges. There exist two different cases which we now treat separately:

• The new edge connects two different components. If both nodes belong to cyclic
components, we obtain a bicyclic component and the process stops. Otherwise,
we merge the corresponding sets by selecting one of the two representatives which
becomes the new representative of the united set. Clearly, the new component is a
tree if and only if both original components are trees.

• The new edge is incident on two nodes belonging to the same set, i.e. the nodes
possess the same representative. Hence, the insertion of the last edge created a
loop. If the cycle flag of this component is already set, a bicyclic component occurs
and the process is stopped. Otherwise, we set the flag and continue the process.

Note that it is not required to update all of p’s entries during a union operation. Instead
of storing the representative for all nodes directly, we just store the parent node. The
representative is the unique node of a component that equals its parent and there exists
an easy recursive algorithm to determine this node. Listing 9.1 provides a pseudo code
implementation of a dynamic disjoint-set, but it does not test for the occurrence of
complex components. See the files tables.hpp and tables.cpp for a full implementation.

First of all, this programs allow us to calculate the percentage of successful constructed
tables. Furthermore, they provide results about the structure of the cuckoo graph, such as
size of the tree components, and the size of cyclic components. However, it is impossible to
determine the size of a cycle contained in a unicyclic component without large additional
effort. Since this number is not important for the analysis of cuckoo hashing, we did not
implement this feature. Finally, we may not want to stop the creation of the graph if a
fixed number of edges is reached, but at the occurrence of the first bicylce. This mode is
supported by the software too. Numerical results obtained using this software are given
in Chapters 5 and 6.
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9.2 Implementation of cuckoo hashing

Further, we use programs that build up a concrete cuckoo hash table in memory. This
software is based on the C++ template library developed in Kutzelnigg [2005]. Most
of the routines have been rewritten and the support of d-cuckoo hashing, asymmetric
table sizes and the simplified algorithm represent completely new features. The software
provides different kinds of hash functions and it is easy to add further ones. In particular,
the following modes are supported:

• Simulation mode: Instead of random keys, we use the numbers from 1 to n as keys
and arrays filled with pseudo random numbers to provide the hash values. Hence,
we achieve almost perfect random behaviour with high performance. This mode is
used to provide the data given in Chapters 4 and 5.

• The universal class of hash functions of Carter and Wegman [1979], mentioned in
Chapter 1. However, we use a slightly modified version that does not require that
the size of the table equals a power of two. More precisely we calculate a 32-bit
hash value as usual and obtain the actual hash value reducing this number modulo
m. This mode is used to obtain the data concerning the runtime presented in
Chapters 7 and 8.

• Polynomial hash functions. So far, the algorithm supports functions of type ax +
b mod m, where x denotes the key, a and b are random 32-bit numbers, m is
a prime number, and the multiplication is performed without taking care of the
overflow. As mentioned in Chapter 1, these functions are suitable for table sizes up
to approximately 105.

This kind of program does not provide information about the cuckoo graph, but we
may count the number of successful constructed tables and we obtain information about
the behaviour of the insertion and search procedures of cuckoo hashing.

9.3 Random numbers

The quality of the output of all this programs depends heavily of the pseudo random
number generator in use. This software includes support respectively implementations of
two reliable random number generators.

• The KISS-generator by Marsaglia. It is based on the additive combination of three
separate random number generators, namely a congruential generator, linear shift-
register and a multiply-with-carry generator. The file random.hpp contains our
implementation of this algorithms.

• The Mersenne Twister developed by Matsumoto and Nishimura [1998]. We use
a C++ implementation of Richard J. Wagner, which is slightly modified for our
purpose. See the file mt.hpp for further details.

All numerical data given in this thesis are obtained using the KISS-generator, because
this algorithm is faster and we could not find significant differences in the output that
would require the usage of the Mersenne Twister.
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Furthermore, it is possible to use a C or C++ implementation of an arbitrary random
number generator with very little afford. All that has to be done, is the implementation
of an interface class, as it is provided for the usage of the Mersenne Twister.
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Appendix A
Selected C++ code listings

This chapter gives some of the most important C++ code listings. All this files (among
many others) are included on the attached CD-ROM. It also contains demo programs
which show the usage of this library and licence information. A preliminary version of
this library was developed for my master thesis (Kutzelnigg [2005]) in Microsoft Visual
C. The current version is tested with various versions of gcc under Linux, but other
compilers and operating systems should work too.

Listing A.1: base.hpp
1 ////////////////////////////////////////////////////////////

// Hashing Library In t e r f a c e
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2007/09/24 07:57 :51 $
// d i s t r i b u t e d under the cond i t i ons o f the LGPL
////////////////////////////////////////////////////////////

10

#ifndef HASH BASE H
#define HASH BASE H

#include <malloc . h>
15 #include <fstream>

typedef unsigned int uint ;
typedef signed char schar ;
typedef unsigned char uchar ;

20

// In t e r f a c e f o r tempate hash l i b r a r y
// a l l der i ved c l a s s e s prov ide at l e a s t :
// opera tors new und d e l e t e
// search (S ) : search fo r key S

25 // i n s e r t (S ) : i n s e r t i on o f key S
// de l (S ) : d e l e t e key S
// ge t n ( ) : re turn number o f i n s e r t e d keys
// out ( s td : : ostream ∗ ) :
// wr i t e s i n t e r na l s t r u c t u r e o f the hash t a b l e in a t e x t f i l e

30 // l a r g e t a b l e s appear truncated
// intended fo r t e s t i n g and genera t ing o f hash demos
template<class S> class Hash base
{
public :

35 virtual ˜Hash base ( ) { }
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void∗ operator new( s i z e t s ) { return malloc ( s ) ; }
void operator delete (void∗ p) { f r e e (p ) ; }
virtual int search (S) = 0 ;
virtual int i n s e r t (S) = 0 ;

40 virtual void de l (S) = 0 ;
virtual int get n ( ) = 0 ;
virtual void out ( std : : ostream ∗) = 0 ;

} ;

45 #endif // HASH BASE H

Listing A.2: threadparam.hpp
1 #ifndef THREADPARAM HPP

#define THREADPARAM HPP

5 class Threadparam c {
public :

int id ;
int rep ;
int∗ e r r o r ;

10 double∗ s e a r c h s t ep s d ;
double∗ t o t a l s t e p s d ;
double∗ e r r o r s t e p s d ;
double∗ max steps d ;
int∗ max global ;

15

Threadparam c ( ) { }
Threadparam c ( int id , int rep , int∗ e r ror , double∗ s e a r ch s t ep s d ,

double∗ t o t a l s t e p s d , double∗ e r r o r s t e p s d ,
double∗ max steps d , int∗ max global )

20 {
Threadparam c : : id =id ;
Threadparam c : : rep = rep ;
Threadparam c : : e r r o r = e r r o r ;
Threadparam c : : s e a r ch s t ep s d = s e a r ch s t ep s d ;

25 Threadparam c : : t o t a l s t e p s d = t o t a l s t e p s d ;
Threadparam c : : e r r o r s t e p s d = e r r o r s t e p s d ;
Threadparam c : : max steps d = max steps d ;
Threadparam c : : max global = max global ;

}
30 Threadparam c ( const Threadparam c& c )

{
Threadparam c : : id =c . id ;
Threadparam c : : rep = c . rep ;
Threadparam c : : e r r o r = c . e r r o r ;

35 Threadparam c : : s e a r ch s t ep s d = c . s e a r c h s t ep s d ;
Threadparam c : : t o t a l s t e p s d = c . t o t a l s t e p s d ;
Threadparam c : : e r r o r s t e p s d = c . e r r o r s t e p s d ;
Threadparam c : : max steps d = c . max steps d ;
Threadparam c : : max global = c . max global ;

40 }
} ;

class Threadparam d {
45 public :

int id ;
int rep ;
int∗ e r r o r ;
double∗ s e a r c h s t ep s d ;

50 double∗ t o t a l s t e p s d ;
double∗ e r r o r s t e p s d ;
double∗ max steps d ;
int∗ max global ;
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55 Threadparam d ( ) { }
Threadparam d ( int id , int rep , int∗ e r ror , double∗ s e a r ch s t ep s d ,

double∗ t o t a l s t e p s d , double∗ e r r o r s t e p s d ,
double∗ max steps d , int∗ max global )

{
60 Threadparam d : : id =id ;

Threadparam d : : rep = rep ;
Threadparam d : : e r r o r = e r r o r ;
Threadparam d : : s e a r ch s t ep s d = s e a r ch s t ep s d ;
Threadparam d : : t o t a l s t e p s d = t o t a l s t e p s d ;

65 Threadparam d : : e r r o r s t e p s d = e r r o r s t e p s d ;
Threadparam d : : max steps d = max steps d ;
Threadparam d : : max global = max global ;

}
Threadparam d ( const Threadparam d& c )

70 {
Threadparam d : : id =c . id ;
Threadparam d : : rep = c . rep ;
Threadparam d : : e r r o r = c . e r r o r ;
Threadparam d : : s e a r ch s t ep s d = c . s e a r c h s t ep s d ;

75 Threadparam d : : t o t a l s t e p s d = c . t o t a l s t e p s d ;
Threadparam d : : e r r o r s t e p s d = c . e r r o r s t e p s d ;
Threadparam d : : max steps d = c . max steps d ;
Threadparam d : : max global = c . max global ;

}
80 } ;

class Threadparam graph {
public :

85 int id ;
int rep ;
int∗ e r r o r ;
double∗ i s o d ;
double∗ i s o s qu d ;

90 double∗ t r e e2 d ;
double∗ t r e e 2 squ d ;
double∗ t r e e5 d ;
double∗ t r e e 5 squ d ;
double∗ ve r t cy c c d ;

95 double∗ ve r t cy c c squ d ;
double∗ no f edge s d ;
double∗ no f cyc ;
double∗ no f cyc squ ;
int∗ max tree sum ;

100 int∗ max cycle sum ;

Threadparam graph ( ) { }
Threadparam graph ( int id , int rep , int∗ e r ror , double∗ i s o d ,

105 double∗ i s o squ d , double∗ t ree2 d , double∗ t r e e2 squ d ,
double∗ t ree5 d , double∗ t r e e5 squ d , double∗ ve r t cycc d ,
double∗ ve r t cycc squ d , double∗ nof edges d ,
double∗ nof cyc , double∗ no f cyc squ ,
int∗ max tree sum , int∗ max cycle sum )

110 {
Threadparam graph : : id = id ;
Threadparam graph : : rep = rep ;
Threadparam graph : : e r r o r = e r r o r ;
Threadparam graph : : i s o d = i s o d ;

115 Threadparam graph : : i s o s qu d = i s o s qu d ;
Threadparam graph : : t r e e 2 d = t r e e2 d ;
Threadparam graph : : t r e e 2 squ d = t r e e2 squ d ;
Threadparam graph : : t r e e 5 d = t r e e5 d ;
Threadparam graph : : t r e e 5 squ d = t r e e5 squ d ;
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120 Threadparam graph : : v e r t c y c c d = ve r t cy c c d ;
Threadparam graph : : v e r t cy c c squ d = ve r t cy c c squ d ;
Threadparam graph : : no f edge s d = no f edge s d ;
Threadparam graph : : no f cyc = no f cyc ;
Threadparam graph : : no f cyc squ = no f cyc squ ;

125 Threadparam graph : : max tree sum = max tree sum ;
Threadparam graph : : max cycle sum = max cycle sum ;

}
Threadparam graph ( const Threadparam graph& c )
{

130 Threadparam graph : : id =c . id ;
Threadparam graph : : rep = c . rep ;
Threadparam graph : : e r r o r = c . e r r o r ;
Threadparam graph : : i s o d = c . i s o d ;
Threadparam graph : : i s o s qu d = c . i s o s qu d ;

135 Threadparam graph : : t r e e 2 d = c . t r e e2 d ;
Threadparam graph : : t r e e 2 squ d = c . t r e e 2 squ d ;
Threadparam graph : : t r e e 5 d = c . t r e e5 d ;
Threadparam graph : : t r e e 5 squ d = c . t r e e 5 squ d ;
Threadparam graph : : v e r t c y c c d = c . v e r t c y c c d ;

140 Threadparam graph : : v e r t cy c c squ d = c . v e r t cy c c squ d ;
Threadparam graph : : no f edge s d = no f edge s d ;
Threadparam graph : : no f cyc = no f cyc ;
Threadparam graph : : no f cyc squ = no f cyc squ ;
Threadparam graph : : max tree sum = max tree sum ;

145 Threadparam graph : : max cycle sum = max cycle sum ;
}

} ;

150 class Threadparam open {
public :

int id ;
int rep ;
int∗ e r r o r ;

155 double∗ t o t a l s t e p s d ;
double∗ s e a r c h s t ep s d ;
double∗ max steps d ;
int∗ max global ;

160 Threadparam open ( ) { }
Threadparam open ( int id , int rep , int∗ e r ror , double∗ t o t a l s t e p s d ,

double∗ s e a r ch s t ep s d , double∗ max steps d , int∗ max global )
{

Threadparam open : : id =id ;
165 Threadparam open : : rep = rep ;

Threadparam open : : e r r o r = e r r o r ;
Threadparam open : : t o t a l s t e p s d = t o t a l s t e p s d ;
Threadparam open : : s e a r ch s t ep s d = s e a r ch s t ep s d ;
Threadparam open : : max steps d = max steps d ;

170 Threadparam open : : max global = max global ;

}
Threadparam open ( const Threadparam open& c )
{

175 Threadparam open : : id =c . id ;
Threadparam open : : rep = c . rep ;
Threadparam open : : e r r o r = c . e r r o r ;
Threadparam open : : t o t a l s t e p s d = c . t o t a l s t e p s d ;
Threadparam open : : s e a r ch s t ep s d = c . s e a r ch s t ep s d ;

180 Threadparam open : : max steps d = c . max steps d ;
Threadparam open : : max global = c . max global ;

}
} ;
#endif /∗THREADPARAM HPP ∗/
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Listing A.3: cuckoo.hpp

1 ////////////////////////////////////////////////////////////
// Cuckoo Hashing Library
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2008/06/29 07:24 :18 $
// d i s t r i b u t e d under the cond i t i ons o f the LGPL
////////////////////////////////////////////////////////////

10 // References :
// Donald E. Knuth , The ar t o f computer programming , volume I I I :
// Sor t ing and searching , second ed . , Addison−Wesley , Boston , 1998.
// Rasmus Pagh and Flemming Friche Rodler , Cuckoo hashing , RS−01−32,
// BRICS, Department o f Computer Science , Un ive r s i t y o f Aarhus , 2001.

15

#ifndef CUCKOO HASH H
#define CUCKOO HASH H

#include <iostream>
20 #include <sstream>

#include <fstream>
#include ”base . hpp” // In t e r f a c e o f my Hash l i b r a r y
#include ”random . hpp” // my implementation o f a random number generator

25

enum {empty , used , de l e t ed } ;

// pure v i r t u a l base c l a s s f o r Cuckoo Hashing
// prov ides f u l l f u n c t i o na l i t y , excep t implemtat ion o f the hash func t . h1 , h2

30 template<class S> class Hash cuck : public Hash base<S>
{
protected :

int m; // s i z e o f 1 t a b l e
int m2; // s i z e o f 2 t a b l e ( u sua l l y equa l to m)

35 int n ; // number o f ac tua l i n s e r t e d e lements
int maxloop ; // max . number o f l oops f o r an i n s e r t i on
S ∗ t ab l e1 ; // both hash t a b l e s use dynamic a l l o c a t e d memory
S ∗ t ab l e2 ;
virtual int h1 (S s ) = 0 ; // hash func t i on fo r t a b l e 1

40 virtual int h2 (S s ) = 0 ; // hash func t i on fo r t a b l e 2
private :

schar ∗ s t a tu s1 ; // s t a t u s t a b l e i n d i c a t e s i f the c e l l i s occupied
schar ∗ s t a tu s2 ; // 0 : occupied , −1 empty , −2 d e l e t e d ;

public :
45 Hash cuck ( int m, int maxloop ) ; // standard cons t ruc tor

Hash cuck ( int m, int m2, int maxloop ) ; // d i f f e r e n t t a b l e s i z e s
˜Hash cuck ( ) ;
int search (S ) ;
int i n s e r t (S ) ;

50 void de l (S ) ;
int get n ( ) { return n ; }
void out ( std : : ostream ∗ ) ;
void occupancy (uint &n1 ) ;

} ;
55

// Implementation fo r unsigned i n t keys
// hash func t i ons o f type ( s∗a+b ) %m where
// a , b : random numberes 0 , 1 . . u−1

60 // prime number t a b l e s i z e s t r on g l y recommended !
// ( c a l c u l a t i o n s with 32 b i t , t runca t ion p o s s i b l e )
class Hash cuck pol : public Hash cuck<uint>
{
private :

65 uint a1 , a2 , b1 , b2 ;
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int h1 (uint s ) { return ( a1∗ s+b1 ) % m; }
int h2 (uint s ) { return ( a2∗ s+b2 ) % m2; }

public :
70 Hash cuck pol ( int m, int maxloop , RandBase∗ random ) ;

Hash cuck pol ( int m, int m2, int maxloop , RandBase∗ random ) ;
Hash cuck pol ( int m, int maxloop , uint a1 , uint b1 , uint a2 , uint b2 ) ;
˜Hash cuck pol ( ) { }

} ;
75

// Implementation fo r unsigned i n t keys
// Carter − Wegman hash func t i ons
class Hash cuck cw : public Hash cuck<uint>

80 {
private :

int r1 [ 1 2 8 ] ;
int r2 [ 1 2 8 ] ;
int h1 (uint s ) ;

85 int h2 (uint s ) ;
public :

Hash cuck cw ( int m, int maxloop , RandBase∗ random ) ;
Hash cuck cw ( int m, int m2, int maxloop , RandBase∗ random ) ;
˜Hash cuck cw ( ) { }

90 } ;

// Implementation ONLY for SIMULATION ! ! !
// ( used to acqu i re the succes ra t e o f t a b l e cons t ruc t i on s )

95 // uses unsigned i n t keys 1 , 2 , 3 , . . . , n max
// and t a b l e s conta in ing random numbers as hash func t i ons
class Hash cuck sim : public Hash cuck<uint>
{
private :

100 int n end ;
uint ∗hv1 , ∗hv2 ;
int h1 (uint s ) { return hv1 [ s%n end ] ; }
int h2 (uint s ) { return hv2 [ s%n end ] ; }

public :
105 Hash cuck sim ( int m, int n end , RandBase∗ random ) ;

Hash cuck sim ( int m, int m2, int n end , RandBase∗ random ) ;
˜Hash cuck sim ( ) ;

} ;

110

// genera l case : a r b i t r a r y hash func t i ons v ia func t i on po in t e r s
template<class S> class Hash cuck gen : public Hash cuck<S>
{
private :

115 int (∗ph1 ) (S , int ) ;
int (∗ph2 ) (S , int ) ;
int h1 (S s ) { return ∗ph1 ( s , Hash cuck gen : :m) ; } ;
int h2 (S s ) { return ∗ph2 ( s , Hash cuck gen : :m) ; } ;

120 public :
Hash cuck gen ( int m, int maxloop , int (∗h1 ) (S , int ) , int (∗h2 ) (S , int ) ) ;

} ;

125 // The d e f i n i t i o n o f the templa te c l a s s i s needed by the compi ler to c rea t e
// ins tance s o f the c l a s s .
// Unt i l the C++ keyword ” expor t ” i s supported , the only ( recommended ) way
// i s to inc lude t h i s d e f i n i t i o n in the header .
#include ”cuckoo . cpp”

130 #endif //CUKCOO HASH H
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Listing A.4: cuckoo.cpp

1 ////////////////////////////////////////////////////////////
// Cuckoo Hashing Library
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2008/06/29 07:24 :18 $
// d i s t r i b u t e d under the cond i t i ons o f the LGPL
////////////////////////////////////////////////////////////

10 #include ”cuckoo . hpp”

template<class S> Hash cuck<S> : : Hash cuck ( int m, int maxloop )
{

Hash cuck : :m = m;
15 Hash cuck : : m2 = m;

Hash cuck : : maxloop = maxloop ;
n = 0 ;
tab l e1 = new S [m] ;
t ab l e2 = new S [m] ;

20 s t a tu s1 = new schar [m] ;
s t a tu s2 = new schar [m] ;

for ( int i=0 ; i<m ; i++)
{

25 s t a tu s1 [ i ] = empty ;
s t a tu s2 [ i ] = empty ;

}
}

30

template<class S> Hash cuck<S> : : Hash cuck ( int m, int m2, int maxloop )
{

Hash cuck : :m = m;
Hash cuck : : m2 = m2;

35 Hash cuck : : maxloop = maxloop ;
n = 0 ;
tab l e1 = new S [m] ;
t ab l e2 = new S [m2 ] ;
s t a tu s1 = new schar [m] ;

40 s t a tu s2 = new schar [m2 ] ;

int i =0;
for ( i=0 ; i<m ; i++)
{

45 s t a tu s1 [ i ] = empty ;
}
for ( i=0 ; i<m2 ; i++)
{

s t a tu s2 [ i ] = empty ;
50 }

}

template<class S> Hash cuck<S> : :˜ Hash cuck ( )
55 {

delete [ ] t ab l e1 ;
delete [ ] t ab l e2 ;
delete [ ] s t a tu s1 ;
delete [ ] s t a tu s2 ;

60 }

template<class S> int Hash cuck<S> : : s earch (S s )
{

65 int h = h1 ( s ) ;
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schar s t a t = s ta tu s1 [ h ] ;
i f ( s t a t==used && tab l e1 [ h]==s )

return 1 ;
i f ( s t a t==empty )

70 return −1;
i f ( s t a tu s2 [ h=h2 ( s )]==used && tab l e2 [ h]==s )

return 2 ;
return −2;

}
75

template<class S> int Hash cuck<S> : : i n s e r t (S s )
{

S p , q=s ; // element q w i l l be i n s e r t e d in t a b l e 1
80 uint h1 q = h1 (q ) ;

uint h2 q ;
uint h2 p ;

i f ( s t a tu s1 [ h1 q ] == used )
85 {

i f ( tab l e1 [ h1 q ] == q)
return 1 ;

i f ( s t a tu s2 [ h2 q=h2 (q ) ] != used )
{

90 t ab l e2 [ h2 q ] = q ;
s ta tu s2 [ h2 q ] = used ;

n++;
return 2 ;

}
95 i f ( tab l e2 [ h2 q ] == q)

return 2 ;
}

for ( int i =1; i<=maxloop ; i++)
100 {

p = tab l e1 [ h1 q ] ; // element p w i l l be i n s e r t e d in t a b l e 2
t ab l e1 [ h1 q ] = q ;
i f ( s t a tu s1 [ h1 q ] != used )
{ // q did not k i c k out an element

105 s t a tu s1 [ h1 q ] = used ;
n++;
i f ( i==1)

return 1 ;
return 2∗ i ;

110 }
h2 p = h2 (p ) ;
q = tab l e2 [ h2 p ] ;
t ab l e2 [ h2 p ] = p ;
i f ( s t a tu s2 [ h2 p ] != used )

115 { // p did not k i c k out an element
s t a tu s2 [ h2 p ] = used ;
n++;
return 2∗ i +1;

}
120 h1 q = h1 (q ) ;

}
return −2∗maxloop−1; // rehash required , i n s e r t i on not p o s s i l e

}

125

template<class S> void Hash cuck<S> : : d e l (S s )
{

uint h = h1 ( s ) ;
i f ( s t a tu s1 [ h]==used && tab l e1 [ h]==s )

130 {
s t a tu s1 [ h ] = de l e t ed ;
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n−−;
return ;

}
135 i f ( s t a tu s1 [ h ] != empty && sta tu s2 [ h=h2 ( s )]==used && tab l e2 [ h]==s )

{
s t a tu s2 [ h ] = de l e t ed ;
n−−;

}
140 }

template<class S> void Hash cuck<S> : : out ( std : : ostream∗ stream )
{

145 int i , j ;

∗ stream << ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ;
i f (m == m2)

∗ stream << ”n=” << n << ” m1=m2=” << m << ”\n” ;
150 else

∗ stream << ”n=” << n << ” m1=” << m << ” m2=” << m2 << ”\n” ;

∗ stream << ”∗∗∗ Tabe l l e 1 : ∗∗∗\n” ;
for ( i =0; i<m && i <100; i+=7)

155 {
for ( j=i ; j<i+7 && j<m; j++)
{

stream−>width ( 1 2 ) ;
∗ stream << j ;

160 }
∗ stream << ”\n” ;
for ( j=i ; j<i+7 && j<m; j++)
{

stream−>width ( 1 2 ) ;
165 i f ( s t a tu s1 [ j ] != used )

∗ stream << ” ” ;
else

∗ stream << t ab l e1 [ j ] ;
}

170 ∗ stream << ”\n” ;
for ( j=i ; j<i+7 && j<m; j++)
{

stream−>width ( 1 2 ) ;
switch ( s t a tu s1 [ j ] )

175 {
case empty : ∗ stream << ”empty” ; break ;
case used : ∗ stream << ”used” ; break ;
case de l e t ed : ∗ stream << ” de l e t ed ” ; break ;

}
180 }

∗ stream << ”\n\n” ;
}

∗ stream << ”∗∗∗ Tabe l l e 2 : ∗∗∗\n” ;
185 for ( i =0; i<m2 && i <100; i+=7)

{
for ( j=i ; j<i+7 && j<m2; j++)
{

stream−>width ( 1 2 ) ;
190 ∗ stream << j ;

}
∗ stream << ”\n” ;
for ( j=i ; j<i+7 && j<m; j++)
{

195 stream−>width ( 1 2 ) ;
i f ( s t a tu s2 [ j ] != used )

∗ stream << ” ” ;
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else
∗ stream << t ab l e2 [ j ] ;

200 }
∗ stream << ”\n” ;
for ( j=i ; j<i+7 && j<m2; j++)
{

stream−>width ( 1 2 ) ;
205 switch ( s t a tu s2 [ j ] )

{
case empty : ∗ stream << ”empty” ; break ;
case used : ∗ stream << ”used” ; break ;
case de l e t ed : ∗ stream << ” de l e t ed ” ; break ;

210 }
}
∗ stream << ”\n\n” ;

}
}

215

template<class S> void Hash cuck<S> : : occupancy (uint &n1 )
{

int i ;
220 n1 = 0 ;

for ( i=0 ; i<m ; i++)
{

i f ( s t a tu s1 [ i ] == used )
n1++;

225 }
}

///////////////////////////////////////////////////////
230 ///////////////////////////////////////////////////////

Hash cuck pol : : Hash cuck pol ( int m, int maxloop , RandBase∗ random)
: Hash cuck<uint>(m, m, maxloop )

235 {
a1 = random−>get (1<<31);
a2 = random−>get (1<<31);
b1 = random−>get (1<<31);
b2 = random−>get (1<<31);

240 }

Hash cuck pol : : Hash cuck pol ( int m, int m2, int maxloop , RandBase∗ random)
: Hash cuck<uint>(m, m2, maxloop )

245 {
a1 = random−>get (1<<31);
a2 = random−>get (1<<31);
b1 = random−>get (1<<31);
b2 = random−>get (1<<31);

250 }

Hash cuck pol : : Hash cuck pol ( int m, int maxloop ,
uint a1 , uint b1 , uint a2 , uint b2 ) : Hash cuck<uint>(m, maxloop )

255 {
Hash cuck pol : : a1 = a1 ;
Hash cuck pol : : a2 = a2 ;
Hash cuck pol : : b1 = b1 ;
Hash cuck pol : : b2 = b2 ;

260 }

///////////////////////////////////////////////////////
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///////////////////////////////////////////////////////
265

Hash cuck cw : : Hash cuck cw ( int m, int maxloop , RandBase∗ random)
: Hash cuck<uint>(m, m, maxloop )

{
270 for ( int i=0 ; i <128 ; i++)

{
r1 [ i ] = random−>get (1<<31);
r2 [ i ] = random−>get (1<<31);

}
275 }

Hash cuck cw : : Hash cuck cw ( int m, int m2, int maxloop , RandBase∗ random)
: Hash cuck<uint>(m, m2, maxloop )

280 {
for ( int i=0 ; i <128 ; i++)
{

r1 [ i ] = random−>get (1<<31);
r2 [ i ] = random−>get (1<<31);

285 }
}

inl ine int Hash cuck cw : : h1 (uint s )
290 {

int addr = −1;
uint h = 0 ;
for (uint i=0 ; i<8 ; i++)
{

295 h ˆ= r1 [ addr += 1 + ( s & 0xF ) ] ;
s >>= 4 ;

}
return h % m;

}
300

inl ine int Hash cuck cw : : h2 (uint s )
{

int addr = −1;
305 uint h = 0 ;

for (uint i=0 ; i<8 ; i++)
{

h ˆ= r2 [ addr += 1 + ( s & 0xF ) ] ;
s >>= 4 ;

310 }
return h % m2;

}

315 ///////////////////////////////////////////////////////
///////////////////////////////////////////////////////

Hash cuck sim : : Hash cuck sim ( int m, int n end , RandBase∗ random)
320 : Hash cuck<uint>(m, n end+1)

{
// s t a t i c RandKISS random(m, 0 ) ;
//random . se tn (m) ;
Hash cuck sim : : n end = n end ;

325 hv1 = new uint [ n end ] ;
hv2 = new uint [ n end ] ;

for ( int i=0 ; i<n end ; i++)
{
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330 hv1 [ i ] = random−>get (m) ;
hv2 [ i ] = random−>get (m) ;

}
}

335

Hash cuck sim : : Hash cuck sim ( int m, int m2, int n end , RandBase∗ random)
: Hash cuck<uint>(m, m2, n end+1)

{
// s t a t i c RandKISS random(m, 0 ) ;

340 //random . se tn (m) ;
Hash cuck sim : : n end = n end ;
hv1 = new uint [ n end ] ;
hv2 = new uint [ n end ] ;

345 for ( int i=0 ; i<n end ; i++)
{

hv1 [ i ] = random−>get (m) ;
hv2 [ i ] = random−>get (m2) ;

}
350 }

Hash cuck sim : : ˜ Hash cuck sim ( )
{

355 delete [ ] hv1 ;
delete [ ] hv2 ;

}

360 ///////////////////////////////////////////////////////
///////////////////////////////////////////////////////

template<class S> Hash cuck gen<S> : : Hash cuck gen (
365 int m, int maxloop , int (∗h1 ) (S , int ) , int (∗h2 ) (S , int ) )

: Hash cuck<S>(m, maxloop )
{

ph1 = h1 ;
ph2 = h2 ;

370 }

Listing A.5: cuckoo main.cpp
1 ////////////////////////////////////////////////////////////

// Simulat ion Programm for the Cuckoo Hashing Library
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2008/09/23 14:45 :29 $
// d i s t r i b u t e d under the cond i t i ons o f the GPL
////////////////////////////////////////////////////////////

10 // This program reque s t s a f i l e ” input . t x t ” , c on s i s t i n g o f l i n e s
// : r e p e t i t i o n s numthread
// . type percentage rerun search
// m n
// m. . . t o t a l memory ( both t a b l e s )

15 // percentage . . . s i z e o f the f i r s t t a b l e m1=m∗ perc /100 , m2=m−m1
// n . . . number o f ( random) elements to i n s e r t
// r e p e t i t i o n s . . . number o f experiments us ing t h i s input
// ( here we count only s u c c e s s f u l experiments )
// type . . . 0 f o r Simulat ion with random numbers , 1 f o r po l . hash func t ions ,

20 // 2 fo r Carter − Wegman s t y l e hash func t i ons
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#include ”mt . hpp”
#include ”random . hpp”

25 #include ”base . hpp”
#include ”cuckoo . hpp”
#include ”threadparam . hpp”
#include <iostream>
#include <sstream>

30 #include <fstream>
#include <time . h>
#include <gmp . h>
#include <pthread . h>
#include <sys / time . h>

35

#define MAX THREADS 8
pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

40

void ∗ s imulate (void∗ params ) ;

45 uint m;
uint m2;
uint n ;
int type = 0 ; // type o f hash func t i on
uint numthreads = 1 ;

50 bool search = fa l se ; // determine search time
bool rerun = fa l se ; // repea t unsucce s s f u l cons t ruc t i on

int main ( )
55 {

uint perc ;
int rep ;
int i ;

60 std : : o f s tream o u t f i l e ;
s td : : i f s t r e am i n f i l e ( ” input . txt ” ) ;
i f ( ! i n f i l e . good ( ) )

return 1 ;

65 t ime t rawtime ;
struct tm ∗ t ime in f o ;

o u t f i l e . open ( ” cuckoo . txt ” , s td : : o f s t ream : : app ) ;
time ( &rawtime ) ;

70 t ime in f o = l o c a l t ime ( &rawtime ) ;
o u t f i l e << ”Current date and time are : ” << asct ime ( t ime in f o ) << ”\n” ;
o u t f i l e . c l o s e ( ) ;

t imeva l s t a r t t v a l , end tva l ;

75 while ( true )
{

gett imeofday(& s t a r t t v a l , 0 ) ;

char bu f f [ 1 0 0 ] ;
80 i n f i l e . g e t l i n e ( buf f , 1 0 0 ) ;

i f ( i n f i l e . e o f ( ) )
break ;

s td : : i s t r i n g s t r e am i s t ( bu f f ) ;

85 switch ( bu f f [ 0 ] )
{

case ’%’ :
case ’ \ r ’ :

125



A Selected C++ code listings

case 0 : continue ;
90 case ’ : ’ : i s t . i gno r e ( 1 ) ;

i s t >> rep ;
i s t >> numthreads ;
i f ( numthreads > MAX THREADS)

numthreads = MAX THREADS;
95 continue ;

case ’ . ’ : i s t . i gno r e ( 1 ) ;
i s t >> type ;
i s t >> perc ;
i s t >> rerun ;

100 i s t >> search ;
continue ;

}
i s t >> m;
i s t >> n ;

105 m2 = m − (m∗perc )/100 ;
m = (m∗perc )/100 ;

i f ( i s t . bad ( ) )
break ;

110

i f (m==m2)
std : : cout << ”\nm1=m2: ” << m ;

else
std : : cout << ”\nm1 : ” << m << ” m2: ” << m2;

115 std : : cout << ” n : ” << n ;
switch ( type )
{

case 0 : std : : cout << ” s imu la t i on \n” ; break ;
case 1 : std : : cout << ” polynomial \n” ; break ;

120 case 2 : std : : cout << ” Carter−Wegman\n” ; break ;
default : s td : : cout << ” e r r o r \n” ; break ;

}

int e r r o r = 0 ;
125 double s e a r c h s t ep s d = 0 ;

double t o t a l s t e p s d = 0 ;
double e r r o r s t e p s d = 0 ;
double max steps d = 0 ;
int max global = 0 ;

130

pthread t t i d [ numthreads ] ;
Threadparam c param [ numthreads ] ;

int rc ;
135 int thread rep = rep / numthreads ;

for ( i = 0 ; i < numthreads ; ++i )
{

i f ( i == numthreads )
140 thread rep = rep − ( numthreads ∗ thread rep ) ;

param [ i ] = Threadparam c ( i , thread rep , &error , &sea r ch s t ep s d ,
&t o t a l s t e p s d , &e r r o r s t e p s d ,
&max steps d , &max global ) ;

145 rc = pth r ead c r ea t e (& t i d [ i ] , NULL, s imulate , &param [ i ] ) ;
i f ( rc != 0)
{

std : : cout << ”Could not c r e a t e thread . Abort .\n” ;
return 1 ;

150 }
}

for ( i = 0 ; i < numthreads ; ++i )
{
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155 rc = pth r ead j o i n ( t i d [ i ] , NULL) ;
i f ( rc != 0)
{

std : : cout << ”Could not j o i n threads . Abort .\n” ;
return 1 ;

160 }
}

time ( &rawtime ) ;
t ime in f o = l o c a l t ime ( &rawtime ) ;

165 gett imeofday(&end tva l , 0 ) ;
unsigned long runt ime sec = end tva l . tv s ec−s t a r t t v a l . t v s e c ;
long runt ime usec = end tva l . tv usec−s t a r t t v a l . t v u s e c ;
i f ( runt ime usec < 0)
{

170 runt ime usec += 1000000;
runt ime sec −= 1 ;

}

o u t f i l e . open ( ” cuckoo . txt ” , s td : : o f s t ream : : app ) ;
175 i f (m==m2)

o u t f i l e << ” m1=m2: ” << m ;
else

o u t f i l e << ” m1: ” << m << ” m2: ” << m2;
o u t f i l e << ” n : ” << n ;

180 switch ( type )
{

case 0 : o u t f i l e << ” s imu la t i on \n” ; break ;
case 1 : o u t f i l e << ” polynomial \n” ; break ;
case 2 : o u t f i l e << ” Carter−Wegman\n” ; break ;

185 default : o u t f i l e << ” e r r o r \n” ; break ;
}
uint rep per formed ;
i f ( rerun )

rep per formed = rep + e r r o r ;
190 else

rep per formed = rep ;

o u t f i l e << ”Number o f e r r o r s : ” << e r r o r << ” during ”
<< rep per formed << ” exper iments .\n”

195 << ”Average number o f s t ep s per i n s e r t i o n ”
<< ” ( only \”good\” graphs ) : ”
<< t o t a l s t e p s d /(n∗(double ) ( rep performed−e r r o r ) ) << ”\n”
<< ”Average number o f s t ep s per i n s e r t i o n ( a l l ) : ”
<< e r r o r s t e p s d /(n∗(double ) ( rep performed−e r r o r ) ) << ”\n”

200 << ”Average max number o f s t ep s per i n s e r t i o n : ”
<< max steps d /(double ) ( rep performed−e r r o r ) << ”\n”
<< ”Total max number o f s t ep s o f an i n s e r t i o n : ”
<< max global << ”\n” ;

i f ( search )
205 o u t f i l e << ”Average number o f s t ep s per s u c c e s s f u l s earch : ”

<< s e a r c h s t ep s d /(n∗(double ) ( rep performed−e r r o r ) ) << ”\n” ;
o u t f i l e << ” runtime in seconds : ” << runt ime sec

<< ” . ” << runt ime usec << ”\n” ;
o u t f i l e << ”Current date and time are : ” << asct ime ( t ime in f o ) << ”\n” ;

210 o u t f i l e . c l o s e ( ) ;
}
std : : cout << ”\n” ;

pthread mutex destroy(&mutex ) ;
215 return 0 ;

}

220 void∗ s imulate (void∗ params )
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{
Threadparam c∗ p = ( Threadparam c ∗) params ;
int rep = p−>rep ;

225 Hash cuck<uint> ∗ t ab l e ;
int i , j ;

int e r r o r l o c a l = 0 ;
mpz t t o t a l s t e p s ;

230 mpz in i t ( t o t a l s t e p s ) ;
mpz t e r r o r s t e p s ;
mpz in i t ( e r r o r s t e p s ) ;
mpz t s e a r ch s t e p s ;
mpz in i t ( s e a r c h s t e p s ) ;

235 mpz t max steps sum ;
mpz in i t ( max steps sum ) ;
int max thread = 0 ;

t ime t l t ime ;
240 time (& l t ime ) ;

int i n i t = l t ime ∗ 1234567 ∗(1+p−>id ) ;
RandKISS random( i n i t ) ;
//MTRand random( i n i t ) ;

245 for ( i=0 ; i<rep ; i++)
{

unsigned int cu r r e n t s t e p s = 0 ;
int max steps = 0 ;

250 switch ( type )
{
case 0 : // s imulat ion , ( pseudo ) random hash func t i ons

t ab l e = new Hash cuck sim (m, m2, n , &random ) ; break ;
case 1 : // polynomial hash func t i ons

255 t ab l e = new Hash cuck pol (m, m2, n+1, &random ) ; break ;
default : // Carter−Wegman l i k e hash func t i ons

t ab l e = new Hash cuck cw (m, m2, n+1, &random ) ;
}

260 int s t ep s ;
for ( j=0 ; j<n ; j++)
{

i f ( type == 0)
s t ep s = table−>i n s e r t ( j ) ;

265 else
{

int key ;
do
{

270 key = random . get (1<<31);
} while ( tab le−>search ( key ) > 0 ) ;
s t ep s = table−>i n s e r t ( key ) ;

}
i f ( s t ep s <= 0)

275 {
e r r o r l o c a l ++;
cu r r e n t s t e p s −= step s ; // s t ep s are nega t i v e
mpz add ui ( e r r o r s t e p s , e r r o r s t e p s , c u r r e n t s t e p s ) ;
i f ( rerun )

280 i−−; // repea t unsucce s s f u l cons t ruc t i on
break ; // cons t ruc t i on not s u c c e s s f u l

}
cu r r e n t s t e p s += st ep s ;
i f ( s t ep s > max steps )

285 max steps = s t ep s ;
}
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mpz add ui ( max steps sum , max steps sum , max steps ) ;
i f ( max steps > max thread )

290 max thread = max steps ;

i f ( search && steps >0)
{ // determine average succ . search cos t

uint n1 ;
295 tab le−>occupancy ( n1 ) ;

mpz add ui ( s e a r ch s t ep s , s e a r ch s t ep s , 2∗n−n1 ) ;
}

// output progres s informat ion
300 i f ( rep /10 > 0 && p−>id == 0)

i f ( ( i +1) % ( rep /10) == 0 )
std : : cout << ( ( i +1)∗100) / rep

<< ” percent done by f i r s t thread .\n” ;

305 mpz add ui ( t o t a l s t e p s , t o t a l s t e p s , c u r r e n t s t e p s ) ;
/∗ s t d : : ofs tream o u t f i l e ;
o u t f i l e . open (” cuckoo . t x t ” , s t d : : o fs tream : : app ) ;
t a b l e−>out(& o u t f i l e ) ;
o u t f i l e . c l o s e ( ) ; ∗/

310 delete t ab l e ;
}
mpz add ( e r r o r s t e p s , e r r o r s t e p s , t o t a l s t e p s ) ;

pthread mutex lock(&mutex ) ;
315 ∗(p−>e r r o r ) += e r r o r l o c a l ;

∗(p−>t o t a l s t e p s d ) += mpz get d ( t o t a l s t e p s ) ;
∗(p−>e r r o r s t e p s d ) += mpz get d ( e r r o r s t e p s ) ;
∗(p−>s e a r c h s t ep s d ) += mpz get d ( s e a r ch s t e p s ) ;
∗(p−>max steps d ) += mpz get d ( max steps sum ) ;

320 i f (∗ ( p−>max global ) < max thread )
∗(p−>max global ) = max thread ;

pthread mutex unlock(&mutex ) ;

mpz c lear ( t o t a l s t e p s ) ;
325 mpz clear ( e r r o r s t e p s ) ;

mpz c lear ( s e a r c h s t e p s ) ;
}

Listing A.6: d-cuckoo.hpp
1 ////////////////////////////////////////////////////////////

// d − Cuckoo Hashing Library
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2008/06/29 07:24 :18 $
// d i s t r i b u t e d under the cond i t i ons o f the LGPL
////////////////////////////////////////////////////////////

10 // References :
// Donald E. Knuth , The ar t o f computer programming , volume I I I :
// Sor t ing and searching , second ed . , Addison−Wesley , Boston , 1998.
// D. Fotakis , R. Pagh , P. Sanders , and P. Sp i rak i s , Space E f f i c i e n t Hash
// Tables with Worst Case Constant Access Time , LNCS 2607 , pp . 271−282, 2003.

15

#ifndef DCUCKOO HASH H
#define DCUCKOO HASH H

#include <iostream>
20 #include <sstream>

#include <fstream>
#include ”base . hpp” // In t e r f a c e o f my Hash l i b r a r y
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#include ”random . hpp” // my implementation o f a random number generator

25

// pure v i r t u a l base c l a s s f o r d − Cuckoo Hashing
template<class S> class Hash d cuck : public Hash base<S>
{
protected :

30 int m; // s i z e o f whole t a b l e
int n ; // number o f ac tua l i n s e r t e d e lements
int d ; // d <=126
bool s epara t e ; // hash func t i ons adress whole t a b l e or not
int maxloop ; // max . number o f l oops f o r an i n s e r t i on

35 S ∗ t ab l e ; // arry ho ld ing ( a l l ) t a b l e data
virtual int h(S s , int nr ) = 0 ; // hash func t i on

private :
int ∗ s t a tu s ; // arry ho ld ing ( a l l ) t a b l e s t a t u s data
uint ∗hv ; // b u f f e r ho ld ing a l l hash po s i t i o n s f o r a f i x e d key

40 public :
Hash d cuck ( int m, int d , bool separate , int maxloop ) ;
˜Hash d cuck ( ) ;
int search (S ) ;
int i n s e r t (S ) ;

45 void de l (S ) ;
int get n ( ) { return n ; }
void out ( std : : ostream ∗ ) ;
uint∗ occupancy ( ) ;

} ;
50

// Implementation fo r unsigned i n t keys
// hash func t i ons o f type ( s∗a+b ) %m where
// a , b : random numberes 0 , 1 . . u−1

55 // prime number t a b l e s i z e s t r on g l y recommended !
// ( c a l c u l a t i o n s with 32 b i t , t runca t ion p o s s i b l e )
class Hash d cuck pol : public Hash d cuck<uint>
{
private :

60 int M;
uint ∗a ;
uint ∗b ;
int h(uint s , int nr ) { return ( a [ nr ]∗ s+b [ nr ] ) % M + separa t e ∗nr∗M; }

public :
65 Hash d cuck pol ( int m, int d , bool separate , int maxloop , RandBase∗ random ) ;

˜Hash d cuck pol ( ) ;
} ;

70 // Implementation fo r unsigned i n t keys
// Carter − Wegman hash func t i ons
class Hash d cuck cw : public Hash d cuck<uint>
{
private :

75 int M;
int ∗∗ r ;
int h(uint s , int nr ) ;

public :
Hash d cuck cw ( int m, int d , bool separate , int maxloop , RandBase∗ random ) ;

80 ˜Hash d cuck cw ( ) ;
} ;

// Implementation ONLY for SIMULATION ! ! !
85 // ( used to acqu i re the succes ra t e o f t a b l e cons t ruc t i on s )

// uses unsigned i n t keys 1 , 2 , 3 , . . . , n max
// and t a b l e s conta in ing random numbers as hash func t i ons
class Hash d cuck sim : public Hash d cuck<uint>
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{
90 private :

int n end ;
uint ∗∗hv ;
int h(uint s , int nr ) { return hv [ nr ] [ s%n end ] ; }

public :
95 Hash d cuck sim ( int m, int d , int n end , bool seperate , RandBase∗ random ) ;

˜Hash d cuck sim ( ) ;
} ;

100 // The d e f i n i t i o n o f the templa te c l a s s i s needed by the compi ler to c rea t e
// ins tance s o f the c l a s s .
// Unt i l the C++ keyword ” expor t ” i s supported , the only ( recommended ) way
// i s to inc lude t h i s d e f i n i t i o n in the header .
#include ”d−cuckoo . cpp”

105 #endif //DCUKCOO HASH H

Listing A.7: d-cuckoo.cpp
1 ////////////////////////////////////////////////////////////

// d − Cuckoo Hashing Library
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2008/06/29 07:24 :18 $
// d i s t r i b u t e d under the cond i t i ons o f the LGPL
////////////////////////////////////////////////////////////

10 template<class S> Hash d cuck<S> : : Hash d cuck
( int m, int d , bool separate , int maxloop )

{
Hash d cuck : :m = m;
Hash d cuck : : maxloop = maxloop ;

15 Hash d cuck : : s epara te = separa t e ;
i f (d > 126)

d = 126 ;
Hash d cuck : : d = d ;
n = 0 ;

20 t ab l e = new S [m] ;
s t a tu s = new int [m] ;
hv = new uint [ d ] ;

for ( int i=0 ; i<m ; i++)
25 {

s t a tu s [ i ] = −1;
}

}

30

template<class S> Hash d cuck<S> : :˜ Hash d cuck ( )
{

delete [ ] t ab l e ;
delete [ ] s t a tu s ;

35 delete [ ] hv ;
}

template<class S> int Hash d cuck<S> : : s earch (S s )
40 {

for ( int i=0 ; i<d ; i++)
{

i f ( s t a tu s [ h ( s , i )]>=0 && tab l e [ h ( s , i )]==s )
return i +1;

45 }
return −d ;
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}

50 template<class S> int Hash d cuck<S> : : i n s e r t (S s )
{

S p , q=s ;
int i , j ;
int nr q ;

55 int nr p ;

hv [ 0 ] = h(q , 0 ) ;
i f ( s t a tu s [ hv [ 0 ] ] == −1)
{ // f i r s t in spec t ed c e l l i s empty

60 t ab l e [ hv [ 0 ] ] = q ;
s t a tu s [ hv [ 0 ] ] = 0 ;
n++;
return 1 ;

}
65

for ( j=1 ; j !=d ; j++)
{

hv [ j ] = h(q , j ) ;
i f ( s t a tu s [ hv [ j ] ] == −1 | | t ab l e [ hv [ j ]]==q)

70 { // found an empty c e l l or q a l ready in t a b l e
t ab l e [ hv [ j ] ] = q ;
s t a tu s [ hv [ j ] ] = j ;
n++;
return 1+j ;

75 }
}
// a l l p o s s i b l e c e l l s f o r q are occupied
p = tab l e [ hv [ 0 ] ] ; // p w i l l be k i cked out
nr p = s ta tu s [ hv [ 0 ] ] ;

80 t ab l e [ hv [ 0 ] ] = q ;
s t a tu s [ hv [ 0 ] ] = 0 ;
q = p ;
nr q = ( nr p+1) % d ;

85 for ( i =1; i<maxloop ; i++)
{

for ( j=nr q ; j !=nr p ; j=( j+1)%d)
{

hv [ j ] = h(q , j ) ;
90 i f ( s t a tu s [ hv [ j ] ] == −1 | | t ab l e [ hv [ j ]]==q)

{ // found an empty c e l l or q a l ready in t a b l e
t ab l e [ hv [ j ] ] = q ;
s t a tu s [ hv [ j ] ] = j ;
n++;

95 int s t ep s = j − nr q + 1 ;
i f ( s t ep s < 0)

s t ep s += d ;
return i ∗(d−1)+1+st ep s ;

}
100 }

// a l l p o s s i b l e c e l l s f o r q are occupied
p = tab l e [ hv [ nr q ] ] ; // p w i l l be k i cked out
nr p = s ta tu s [ hv [ nr q ] ] ;
t ab l e [ hv [ nr q ] ] = q ;

105 s t a tu s [ hv [ nr q ] ] = nr q ;
q = p ;
nr q = ( nr p+1) % d ;

}
return −maxloop ∗(d−1)+1;

110 // rehash required , i n s e r t i on not p o s s i l e
}
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template<class S> void Hash d cuck<S> : : d e l (S s )
115 {

int r = search ( s ) ;
i f ( r >= 0)
{

s t a tu s [ h ( s , r ) ] = −1;
120 n−−;

}
}

125 template<class S> void Hash d cuck<S> : : out ( std : : ostream∗ stream )
{

int i , j ;

∗ stream << ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ;
130 ∗ stream << ”n=” << n << ” m=” << m << ” d=” << d << ”\n” ;

for ( i =0; i<m && i <100; i+=7)
{

for ( j=i ; j<i+7 && j<m; j++)
135 {

stream−>width ( 1 2 ) ;
∗ stream ;

}
∗ stream << ”\n” ;

140

for ( j=i ; j<i+7 && j<m; j++)
{

stream−>width ( 1 2 ) ;
i f ( s t a tu s [ j ] < 0)

145 ∗ stream << ” ” ;
else

∗ stream << t ab l e [ j ] ;
}
∗ stream << ”\n” ;

150 for ( j=i ; j<i+7 && j<m; j++)
{

stream−>width ( 1 2 ) ;
∗ stream << s t a tu s [ j ] ;

}
155 ∗ stream << ”\n\n” ;

}
}

160 template<class S> uint∗ Hash d cuck<S> : : occupancy ( )
{

uint i ;
int p ;
uint∗ o ;

165 o = new uint [ d ] ;
for ( i=0 ; i<d ; i++)

o [ i ] = 0 ;
for ( i=0 ; i<m ; i++)
{

170 p = s ta tu s [ i ] ;
i f (p >= 0)

o [ p]++;
}
return o ;

175 }

///////////////////////////////////////////////////////
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///////////////////////////////////////////////////////
180

Hash d cuck pol : : Hash d cuck pol
( int m, int d , bool separate , int maxloop , RandBase∗ random)
: Hash d cuck<uint>(m, d , separate , maxloop )

185 {
a = new uint [ d ] ;
b = new uint [ d ] ;

i f ( s epara t e )
190 M = m/d ;

else
M = m;

for ( int i=0 ; i<d ; i++)
195 {

a [ i ] = random−>get (1<<31);
b [ i ] = random−>get (1<<31);

}
}

200

Hash d cuck pol : : ˜ Hash d cuck pol ( )
{

delete [ ] a ;
205 delete [ ] b ;

}

///////////////////////////////////////////////////////
210 ///////////////////////////////////////////////////////

Hash d cuck cw : : Hash d cuck cw
( int m, int d , bool separate , int maxloop , RandBase∗ random)

215 : Hash d cuck<uint>(m, d , separate , maxloop )
{

i f ( s epara t e )
M = m/d ;

else
220 M = m;

r = new int ∗ [ d ] ;
for ( int j=0 ; j<d ; j++)
{

r [ j ] = new int [ 1 2 8 ] ;
225 for ( int i=0 ; i <128 ; i++)

{
r [ j ] [ i ] = random−>get (1<<31);

}
}

230 }

Hash d cuck cw : : ˜ Hash d cuck cw ( )
{

235 for ( int j=0 ; j<d ; j++)
{

delete [ ] r [ j ] ;
}
delete [ ] r ;

240 }

inl ine int Hash d cuck cw : : h (uint s , int nr )
{

134



A.8 tables.hpp

245 int addr = −1;
uint h = 0 ;
for (uint i=0 ; i<8 ; i++)
{

h ˆ= r [ nr ] [ addr += 1 + ( s & 0xF ) ] ;
250 s >>= 4 ;

}
return h % M + separa te ∗nr∗M; ;

}

255

///////////////////////////////////////////////////////
///////////////////////////////////////////////////////

260 Hash d cuck sim : : Hash d cuck sim
( int m, int d , int n end , bool separate , RandBase∗ random)
: Hash d cuck<uint>( s epara t e ? d∗(m/d) : m, d , separate , d∗n end+1)

{
Hash d cuck sim : : n end = n end ;

265 hv = new uint ∗ [ d ] ;

i f ( ! s epara t e )
{

for ( int j=0 ; j<d ; j++)
270 {

hv [ j ] = new uint [ n end ] ;
for ( int i=0 ; i<n end ; i++)
{

hv [ j ] [ i ] = random−>get (m) ;
275 }

}
}
else
{

280 for ( int j=0 ; j<d ; j++)
{

hv [ j ] = new uint [ n end ] ;
for ( int i=0 ; i<n end ; i++)
{

285 hv [ j ] [ i ] = random−>get (m/d) + j ∗(m/d ) ;
}

}
}

}
290

Hash d cuck sim : : ˜ Hash d cuck sim ( )
{

for ( int j=0 ; j<d ; j++)
295 {

delete [ ] hv [ j ] ;
}
delete [ ] hv ;

}

Listing A.8: tables.hpp
1 ////////////////////////////////////////////////////////////

// ( B i pa r t i t e ) D i s j o in t Set−Forest Library
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2007/09/24 07:57 :51 $
// d i s t r i b u t e d under the cond i t i ons o f the LGPL
////////////////////////////////////////////////////////////
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10 // References :
// T. C. Cormen , C. E. Leiserson , and R. L. Rivest ,
// In t roduc t i on to Algorithms , MIT Press , London , 2000.

#ifndef TABLES HPP
15 #define TABLES HPP

#include <malloc . h>

class Tables
20 {

bool b i p a r t i t e ;
int ∗ s e t1 ;
int ∗ s i z e 1 ;
bool ∗ c y c l i c 1 ;

25 int ∗ s e t2 ;
int ∗ s i z e 2 ;
bool ∗ c y c l i c 2 ;

public :
30 Tables ( int m, int m2=0);

˜Tables ( ) ;

// re turns the parent o f u
int parent ( int u ) ;

35

// unions the components with roo t s u and v (new root v )
void merge ( int u , int v ) ;

// re turns the s i z e o f the component conta in ing u , only f o r root nodes !
40 int g e t s i z e ( int u ) ;

// s e t s the s i z e o f the component with root u to s
void s e t s i z e ( int u , int s ) ;

45 // re turns i f u i s in a cyc le , use only f o r root nodes !
int g e t c y c l i c ( int u ) ;

// marks the component with root u as c y c l i c
void s e t c y c l i c ( int u ) ;

50

// re turns the root node o f u
int f i n d s e t ( int u ) ;

void∗ operator new( s i z e t s ) { return malloc ( s ) ; }
55 void operator delete (void∗ p) { f r e e (p ) ; }

} ;

#endif /∗TABLES HPP ∗/

Listing A.9: tables.cpp
1 ////////////////////////////////////////////////////////////

// B i pa r t i t e D i s j o in t Set−Forest Library
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2008/07/07 14:57 :49 $
// d i s t r i b u t e d under the cond i t i ons o f the LGPL
////////////////////////////////////////////////////////////

10 #include ” t ab l e s . hpp”

Tables : : Tables ( int m, int m2)
{
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i f (m2 <= 0)
15 b i p a r t i t e = fa l se ;

else
b i p a r t i t e = true ;

s e t 1 = new int [m+1] ;
20 s i z e 1 = new int [m+1] ;

c y c l i c 1 = new bool [m+1] ;

for ( int j=1 ; j<m+1 ; j++)
{

25 s e t1 [ j ] = j ;
s i z e 1 [ j ] = 1 ;
c y c l i c 1 [ j ] = fa l se ;

}

30 i f ( b i p a r t i t e )
{

s e t2 = new int [m2+1] ;
s i z e 2 = new int [m2+1] ;
c y c l i c 2 = new bool [m2+1] ;

35

for ( int j=1 ; j<m2+1 ; j++)
{

s e t2 [ j ] = −j ;
s i z e 2 [ j ] = 1 ;

40 c y c l i c 2 [ j ] = fa l se ;
}

}
}

45 Tables : : ˜ Tables ( )
{

delete [ ] s e t 1 ;
delete [ ] s i z e 1 ;
delete [ ] c y c l i c 1 ;

50

i f ( b i p a r t i t e )
{

delete [ ] s e t 2 ;
delete [ ] s i z e 2 ;

55 delete [ ] c y c l i c 2 ;
}

}

60 int Tables : : parent ( int u)
{

i f (u > 0)
{ // f i r s t t a b l e

return s e t1 [ u ] ;
65 }

// second t a b l e
return s e t2 [−u ] ;

}

70

void Tables : : merge ( int u , int v )
{

i f (u > 0)
{ // f i r s t t a b l e

75 s e t1 [ u ] = v ;
return ;

}
// second t a b l e
s e t2 [−u ] = v ;
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80 }

int Tables : : g e t s i z e ( int u)
{

85 i f (u>0)
{ // f i r s t t a b l e

return s i z e 1 [ u ] ;
}
// second t a b l e

90 return s i z e 2 [−u ] ;
}

void Tables : : s e t s i z e ( int u , int s )
95 {

int h ;

i f (u>0)
{ // f i r s t t a b l e

100 h = s i z e 1 [ u ] ;
s i z e 1 [ u ] = s ;
return ;

}
// second t a b l e

105 h = s i z e 2 [−u ] ;
s i z e 2 [−u ] = s ;

}

110 int Tables : : g e t c y c l i c ( int u)
{

i f (u>0)
{ // f i r s t t a b l e

return c y c l i c 1 [ u ] ;
115 }

return c y c l i c 2 [−u ] ;
}

120 void Tables : : s e t c y c l i c ( int u)
{

int h ;

i f (u>0)
125 { // f i r s t t a b l e

h = cy c l i c 1 [ u ] ;
c y c l i c 1 [ u ] = true ;
return ;

}
130 // second t a b l e

h = cy c l i c 2 [−u ] ;
c y c l i c 2 [−u ] = true ;

}

135

int Tables : : f i n d s e t ( int u)
{ // standard ver s ion

while ( parent (u) != u)
140 u = parent (u ) ;

return u ;
}

/∗
145 i n t Tables : : f i n d s e t ( i n t u)
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{ // shor ten path l eng t h
i n t v = parent (u ) ;
i n t w = u ;
i f ( v != u)

150 {
w = f i n d s e t ( v ) ;
merge (u ,w) ;

}
re turn w;

155 }
∗/

Listing A.10: graphs main.cpp
1 ////////////////////////////////////////////////////////////

// Simulat ion o f the e vo l u t i on o f a Random ( B ipa r t i t e ) Graph
// by Reinhard Kutze ln igg
// bug repor t s and comments to kutzelnigg@dmg . tuwien . ac . at

5 // www.dmg . tuwien . ac . at / k u t z e l n i g g
// l a s t updated : $Date : 2008/07/08 17:21 :33 $
// d i s t r i b u t e d under the cond i t i ons o f the GPL
////////////////////////////////////////////////////////////

10 // This program reque s t s a f i l e ”g−input . t x t ” in the l o c a l d i r ec tory ,
// c on s i s t i n g o f l i n e s :
// : r e p e t i t i o n s numthread
// . maxgrow b i p a r t i t e percentage
// m n

15 // m. . . t o t a l memory ( both t a b l e s )
// percentage . . . s i z e o f the f i r s t t a b l e ( i f b i p a r t i e ) m1=m∗ perc /100 , m2=m−m1
// n . . . number o f ( random) edges to crea t e
// r e p e t i t i o n s . . . number o f experiments us ing t h i s input
// b i p a r t i t e . . . usua l random graph i f zero , b i p a r t i t e o therwi se

20

#include ” t ab l e s . hpp”
#include ”random . hpp”
#include ”threadparam . hpp”

25 #include <iostream>
#include <fstream>
#include <sstream>
#include <time . h>
#include <gmp . h>

30 #include < l im i t s>
#include <pthread . h>

#define MAX THREADS 8
35 pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;

void ∗ s imulate (void∗ params ) ;

40

uint m;
uint m2;
uint n ;
bool b i p a r t i t e = true ;

45 bool maxgrow = fa l se ;
uint numthreads = 1 ;

int main ( )
50 {

uint perc ;
int rep ;
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int i ;

55 std : : o f s tream o u t f i l e ;
s td : : i f s t r e am i n f i l e ( ”g−input . txt ” ) ;
i f ( ! i n f i l e . good ( ) )

return 1 ;

60 t ime t rawtime ;
struct tm ∗ t ime in f o ;

o u t f i l e . open ( ” graphs . txt ” , s td : : o f s tream : : app ) ;
time ( &rawtime ) ;

65 t ime in f o = l o c a l t ime ( &rawtime ) ;
o u t f i l e << ”Current date and time are : ” << asct ime ( t ime in f o ) ; // << ”\n”;
o u t f i l e . c l o s e ( ) ;

while ( true )
70 {

char bu f f [ 1 0 0 ] ;
i n f i l e . g e t l i n e ( buf f , 1 0 0 ) ;
i f ( i n f i l e . e o f ( ) )

break ;
75 std : : i s t r i n g s t r e am i s t ( bu f f ) ;

switch ( bu f f [ 0 ] )
{

case ’%’ :
80 case ’ \ r ’ :

case 0 : continue ;
case ’ : ’ : i s t . i gno r e ( 1 ) ;

i s t >> rep ;
i s t >> numthreads ;

85 i f ( numthreads > MAX THREADS)
numthreads = MAX THREADS;

continue ;
case ’ . ’ : i s t . i gno r e ( 1 ) ;

i s t >> maxgrow ;
90 i s t >> b i p a r t i t e ;

i f ( b i p a r t i t e )
i s t >> perc ;

continue ;
}

95 i s t >> m;
i f ( ! maxgrow)

i s t >> n ;
i f ( b i p a r t i t e )
{

100 m2 = m − (m∗perc )/100 ;
m = (m∗perc )/100 ;

}
else // assignment to avoid s p e c i a l cases . . .

m2 = m;
105

i f ( i s t . bad ( ) )
break ;

i f ( ! b i p a r t i t e )
110 std : : cout << ”\nusual graph : ” << ”m: ” << m;

else i f (m == m2)
std : : cout << ”\ nb i p a r t i t e graph : ” << ”m1=m2: ” << m;

else
std : : cout << ”\ nb i p a r t i t e graph : ” << ”m1: ” << m << ” m2: ” << m2;

115 i f (maxgrow)
std : : cout << ” n : i n f \n” ;

else
std : : cout << ” n : ” << n << ”\n” ;
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120 int e r r o r = 0 ;
double i s o d = 0 ;
double i s o s qu d = 0 ;
double t r e e2 d = 0 ;
double t r e e 2 squ d = 0 ;

125 double t r e e5 d = 0 ;
double t r e e 5 squ d = 0 ;
double ve r t cy c c d = 0 ;
double ve r t cy c c squ d = 0 ;
double no f edge s d = 0 ;

130 double no f cyc = 0 ;
double no f cyc squ = 0 ;
int max tree sum = 0 ;
int max cycle sum = 0 ;

135 pthread t t i d [ numthreads ] ;
Threadparam graph param [ numthreads ] ;

int rc ;
int thread rep = rep / numthreads ;

140

for ( i = 0 ; i < numthreads ; ++i )
{

i f ( i == numthreads )
thread rep = rep − ( numthreads ∗ thread rep ) ;

145 param [ i ] = Threadparam graph ( i , thread rep , &error , &i so d ,
&i so squ d , &tree2 d , &tree2 squ d , &tree5 d ,
&tree5 squ d , &ver t cycc d , &ve r t cycc squ d ,
&nof edges d , &nof cyc , &nof cyc squ ,
&max tree sum , &max cycle sum ) ;

150 rc = pth r ead c r ea t e (& t i d [ i ] , NULL, s imulate , &param [ i ] ) ;
i f ( rc != 0)
{

std : : cout << ”Could not c r e a t e thread . Abort .\n” ;
return 1 ;

155 }
}

for ( i = 0 ; i < numthreads ; ++i )
{

160 rc = pth r ead j o i n ( t i d [ i ] , NULL) ;
i f ( rc != 0)
{

std : : cout << ”Could not j o i n threads . Abort .\n” ;
return 1 ;

165 }
}

time ( &rawtime ) ;
t ime in f o = l o c a l t ime ( &rawtime ) ;

170 o u t f i l e . open ( ” graphs . txt ” , s td : : o f s tream : : app ) ;
i f ( ! b i p a r t i t e )

o u t f i l e << ”\nusual graph : ” << ”m: ” << m;
else i f (m == m2)

o u t f i l e << ”\ nb i p a r t i t e graph : ” << ”m1=m2: ” << m;
175 else

o u t f i l e << ”\ nb i p a r t i t e graph : ” << ”m1: ” << m << ” m2: ” << m2;
i f (maxgrow)

o u t f i l e << ” n : i n f \n”
<< ”Average number o f edges t i l l b i c y c l e : ”

180 << no f edge s d / rep << ”\n” ;
else

o u t f i l e << ” n : ” << n << ”\n”
<< ”Number o f e r r o r s : ” << e r r o r << ” during ”
<< rep+e r r o r << ” exper iments .\n” ;
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185 o u t f i l e << ”Average number o f i s o l a t e d v e r t i c e s : ”
<< i s o d / rep << ”\n”
<< ”Sample var iance o f i s o l a t e d v e r t i c e s : ”
<< ( i s o squ d−i s o d ∗ i s o d / rep )/ ( rep−1) << ”\n”
<< ”Average number o f t r e e s o f s i z e 2 : ”

190 << t r e e2 d / rep << ”\n”
<< ”Sample var iance o f t r e e s with 2 nodes : ”
<< ( t r ee2 squ d−t r e e2 d ∗ t r e e2 d / rep )/ ( rep−1) << ”\n”
<< ”Average number o f t r e e s o f s i z e 5 : ”
<< t r e e5 d / rep << ”\n”

195 << ”Sample var iance o f t r e e s with 5 nodes : ”
<< ( t r ee5 squ d−t r e e5 d ∗ t r e e5 d / rep )/ ( rep−1) << ”\n”
<< ”Average number o f v e r t i c e s in c y c l i c components : ”
<< ve r t cy c c d /(double ) rep <<”\n”
<< ”Sample var iance o f v e r t i c e s in c y c l i c components : ”

200 << ( ve r t cycc squ d−ve r t cy c c d ∗ ve r t cy c c d / rep )/ ( rep−1) << ”\n”
<< ”Average number o f c y c l e s : ” << no f cyc /(double ) rep << ”\n”
<< ”Sample var iance o f number o f c y c l e s : ”
<< ( no f cyc squ−no f cyc ∗ no f cyc /(double ) rep )/ ( rep−1) << ”\n”
<< ”Average max . t r e e s i z e : ”

205 << max tree sum / (double ) rep << ”\n”
<< ”Average max . cy c l e s i z e : ”
<< max cycle sum / (double ) rep << ”\n” ;

o u t f i l e << ”Current date and time are : ” << asct ime ( t ime in f o ) << ”\n” ;
o u t f i l e . c l o s e ( ) ;

210 }
std : : cout << ”\n” ;

pthread mutex destroy(&mutex ) ;
return 0 ;

215 }

void∗ s imulate (void∗ params )
{

220 Threadparam graph∗ p = ( Threadparam graph ∗) params ;
int rep = p−>rep ;

Tables ∗ t ;
int i , j , k ;

225

int e r r o r l o c a l = 0 ;
mpz t i s o l a t e d v e r t i c e s ;
mpz in i t ( i s o l a t e d v e r t i c e s ) ;
mpz t i s o l a t e d v e r t i c e s s q u ;

230 mpz in i t ( i s o l a t e d v e r t i c e s s q u ) ;
mpz t t r e e 2 v e r t i c e s ;
mpz in i t ( t r e e 2 v e r t i c e s ) ;
mpz t t r e e 2 v e r t i c e s s q u ;
mpz in i t ( t r e e 2 v e r t i c e s s q u ) ;

235 mpz t t r e e 5 v e r t i c e s ;
mpz in i t ( t r e e 5 v e r t i c e s ) ;
mpz t t r e e 5 v e r t i c e s s q u ;
mpz in i t ( t r e e 5 v e r t i c e s s q u ) ;
mpz t ver t in cyc comp ;

240 mpz in i t ( ve r t in cyc comp ) ;
mpz t ve r t in cyc comp squ ;
mpz in i t ( ve r t in cyc comp squ ) ;
mpz t no f edge s ;
mpz in i t ( no f edge s ) ;

245 mpz t he lp ;
mpz in i t ( he lp ) ;
int n o f c y c l e s = 0 ;
mpz t n o f c y c l e s s q u ;
mpz in i t ( n o f c y c l e s s q u ) ;

250 mpz t max tree sum ;
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mpz in i t ( max tree sum ) ;
mpz t max cycle sum ;
mpz in i t ( max cycle sum ) ;
bool e r r o r = fa l se ;

255

t ime t l t ime ;
time (& l t ime ) ;
int i n i t = l t ime ∗ 1234567 ∗(1+p−>id ) ;
RandKISS random( i n i t ) ;

260

for ( i=0 ; i<rep ; i++)
{

e r r o r = fa l se ;
265 i f ( b i p a r t i t e )

t = new Tables (m,m2) ;
else

t = new Tables (m) ;

270 int i s o l a t e d = 0 ;
int t r e e2 = 0 ;
int t r e e5 = 0 ;
int cyc nodes = 0 ;
int n o f c y c l e s l o c a l = 0 ;

275

for ( j=0 ; maxgrow | | j<n ; j++)
{

// generate new edge
int u = random . get (m)+1;

280 int v = random . get (m2)+1;
i f ( b i p a r t i t e )

v = −v ;

u = t−>f i n d s e t (u ) ;
285 v = t−>f i n d s e t ( v ) ;

i f (u != v )
{ // the edge connectes d i f f e r e n t components

i f ( t−>g e t c y c l i c (u)==true && t−>g e t c y c l i c ( v)==true )
{ // the edge connects two c y c l i c components

290 // => t he re i s a b i c y c l i c component
i f ( ! maxgrow)
{

e r r o r = true ;
e r r o r l o c a l ++;

295 i−−;
}
break ;

}
bool c y c l i c = fa l se ;

300 i f ( t−>g e t c y c l i c (u)==true | | t−>g e t c y c l i c ( v)==true )
// the edge connects a t r e e with a un i c y c l i c component
c y c l i c = true ;

int s i z e 1 = t−>g e t s i z e (u ) ;
int s i z e 2 = t−>g e t s i z e ( v ) ;

305

// union s e t s
i f ( s i z e 1 < s i z e 2 )
{

t−>merge (u , v ) ;
310 t−>s e t s i z e (v , s i z e 1+s i z e 2 ) ;

i f ( c y c l i c )
t−>s e t c y c l i c ( v ) ;

}
else

315 {
t−>merge (v , u ) ;
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t−>s e t s i z e (u , s i z e 1+s i z e 2 ) ;
i f ( c y c l i c )

t−>s e t c y c l i c (u ) ;
320 }

}
else i f ( t−>g e t c y c l i c (u) == true )
{ // there i s a b i c y c l i c component

i f ( ! maxgrow)
325 {

e r r o r = true ;
e r r o r l o c a l ++;
i−−;

}
330 break ;

}
else

t−>s e t c y c l i c (u ) ;
}

335

i f ( e r r o r == fa l se )
{

// s t a t i s t i c
int max t r e e l o c a l = 0 ;

340 int max cyc l e l o c a l = 0 ;
int s i z e ;
for ( k=1 ; k<m+1 ; k++)
{

i f ( t−>parent (k)==k)
345 {

s i z e = t−>g e t s i z e ( k ) ;
i f ( t−>g e t c y c l i c ( k ) == fa l se )
{

i f ( s i z e > max t r e e l o c a l )
350 max t r e e l o c a l = s i z e ;

switch ( s i z e )
{
case 1 : i s o l a t e d++; break ;
case 2 : t r e e2++; break ;

355 case 5 : t r e e5++; break ;
}

}
else
{

360 n o f c y c l e s l o c a l ++;
cyc nodes += s i z e ;
i f ( s i z e > max cyc l e l o c a l )

max cyc l e l o c a l = s i z e ;
}

365 }
}
i f ( b i p a r t i t e )
{

for ( k=1 ; k<m2+1 ; k++)
370 {

i f ( t−>parent(−k)==−k )
{

s i z e = t−>g e t s i z e (−k ) ;
i f ( t−>g e t c y c l i c (−k ) == fa l se )

375 {
i f ( s i z e > max t r e e l o c a l )

max t r e e l o c a l = s i z e ;
switch ( s i z e )
{

380 case 1 : i s o l a t e d++; break ;
case 2 : t r e e2++; break ;
case 5 : t r e e5++; break ;
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}
}

385 else
{

n o f c y c l e s l o c a l ++;
cyc nodes += s i z e ;
i f ( s i z e > max cyc l e l o c a l )

390 max cyc l e l o c a l = s i z e ;
}

}
}

}
395 mpz add ui ( i s o l a t e d v e r t i c e s , i s o l a t e d v e r t i c e s , i s o l a t e d ) ;

mpz se t u i ( help , i s o l a t e d ) ;
mpz addmul ui ( i s o l a t e d v e r t i c e s s q u , help , i s o l a t e d ) ;
mpz add ui ( t r e e 2 v e r t i c e s , t r e e 2 v e r t i c e s , t r e e2 ) ;
mpz se t u i ( help , t r e e2 ) ;

400 mpz addmul ui ( t r e e 2 v e r t i c e s s q u , help , t r e e2 ) ;
mpz add ui ( t r e e 5 v e r t i c e s , t r e e 5 v e r t i c e s , t r e e5 ) ;
mpz se t u i ( help , t r e e5 ) ;
mpz addmul ui ( t r e e 5 v e r t i c e s s q u , help , t r e e5 ) ;
mpz add ui ( vert in cyc comp , vert in cyc comp , cyc nodes ) ;

405 mpz set u i ( help , cyc nodes ) ;
mpz addmul ui ( ver t in cyc comp squ , help , cyc nodes ) ;
i f (maxgrow)

mpz add ui ( no f edges , no f edges , j ) ;
n o f c y c l e s += n o f c y c l e s l o c a l ;

410 mpz add ui ( no f c y c l e s s qu , no f c y c l e s s qu ,
n o f c y c l e s l o c a l ∗ n o f c y c l e s l o c a l ) ;

mpz add ui ( max tree sum , max tree sum , max t r e e l o c a l ) ;
mpz add ui ( max cycle sum , max cycle sum , max cyc l e l o c a l ) ;

}
415 delete t ;

// output progres s informat ion
i f ( rep /10 > 0 && p−>id == 0)

i f ( ( i +1) % ( rep /10) == 0 )
std : : cout << ( ( i +1)∗100) / rep

420 << ” percent done by f i r s t thread .\n” ;
}

pthread mutex lock(&mutex ) ;
425 ∗(p−>e r r o r ) += e r r o r l o c a l ;

∗(p−>i s o d ) += mpz get d ( i s o l a t e d v e r t i c e s ) ;
∗(p−>i s o s qu d ) += mpz get d ( i s o l a t e d v e r t i c e s s q u ) ;
∗(p−>t r e e2 d ) += mpz get d ( t r e e 2 v e r t i c e s ) ;
∗(p−>t r e e 2 squ d ) += mpz get d ( t r e e 2 v e r t i c e s s q u ) ;

430 ∗(p−>t r e e5 d ) += mpz get d ( t r e e 5 v e r t i c e s ) ;
∗(p−>t r e e 5 squ d ) += mpz get d ( t r e e 5 v e r t i c e s s q u ) ;
∗(p−>ve r t cy c c d ) += mpz get d ( ve r t in cyc comp ) ;
∗(p−>ve r t cy c c squ d ) += mpz get d ( ve r t in cyc comp squ ) ;
∗(p−>no f cyc ) += no f c y c l e s ;

435 ∗(p−>no f cyc squ ) += mpz get d ( n o f c y c l e s s q u ) ;
∗(p−>max tree sum ) += mpz get d ( max tree sum ) ;
∗(p−>max cycle sum ) += mpz get d ( max cycle sum ) ;
∗(p−>no f edge s d ) += mpz get d ( no f edge s ) ;
pthread mutex unlock(&mutex ) ;

440

mpz clear ( i s o l a t e d v e r t i c e s ) ;
mpz c lear ( i s o l a t e d v e r t i c e s s q u ) ;
mpz c lear ( t r e e 2 v e r t i c e s ) ;
mpz c lear ( t r e e 2 v e r t i c e s s q u ) ;

445 mpz clear ( t r e e 5 v e r t i c e s ) ;
mpz c lear ( t r e e 5 v e r t i c e s s q u ) ;
mpz c lear ( ve r t in cyc comp ) ;
mpz c lear ( ve r t in cyc comp squ ) ;
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mpz clear ( no f edge s ) ;
450 mpz clear ( he lp ) ;

}
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Appendix B
Selected Maple worksheets

In this chapter, we present some of the most important Maple worksheets used to perform
the calculations decribed in the previous chapters. All files (and some others) are included
on the attached CD-ROM.

In general, each worksheet starts with the derivation of the saddle point theorem that is
required to obtain the desired results. After this initial calculation, the actual derivation
of special results start. At this point, is should be easy to exchange the involved functions
and hence adopt the worksheet to perform different calculations that are however based
on the same saddle point method.
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convergence
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O(1) worst case access time. J. ACM, 31(3):538–544, 1984.
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Alfons Kemper and Antré Eickler. Datenbanksysteme. Oldenburg, München, Wien, sixth
edition, 2006.

Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing: Cuckoo
hashing with a stash. In Proceedings of the 16th Annual European Symposium on
Algorithms, 2008.

Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, Boston, second edition, 1998.

Reinhard Kutzelnigg. Analyse von Hash-Algorithmen. Master’s thesis, TU-Wien, 2005.

Reinhard Kutzelnigg. Bipartite random graphs and cuckoo hashing. In Proceedings of
the 4th Colloquium on Mathematics and Computer Science, Discrete Mathematics and
Theoretical Computer Science, pages 403–406, 2006.

Reinhard Kutzelnigg. An improved version of cuckoo hashing: Average case analysis
of construction cost and search operations. In Proceedings of the 19th internatinal
workshop on combinatorial algoritms, pages 253–266, 2008.

Chuck Lever. Linux kernel hash table behavior: Analysis and improvements. In Proceed-
ings of the 4th Annual Linux Showcase and Conference, pages 13–26, 2000.
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Table of Symbols and Notations

Symbol Interpretation
<z real part of the complex number z
=z imaginary part of the complex number z

P(A) probability of an event A
P(A|B) probability of an event A, conditioned on the occurrence of eventB

Eη expectation of a random variable η
Vη variance of a random variable η

δi,j Kronecker’s delta, δi,j =

{
1 if i equals j
0 otherwise

bxc floor of x, greatest integer k satisfying k ≤ x
{x} fractional part of x (i.e. x− bxc)
⊕ bitwise exclusive or operation

xk x(x+ 1)(x+ 2) . . . (x+ k − 1)
xk x(x− 1)(x− 2) . . . (x− k + 1)

f(n) = O(g(n)) limn→∞
f(n)
g(n) = 0

f(n) = O(g(n)) |f(n)| ≤ c|g(n)| holds for all suff. large n and a constant c > 0
f(n) = Θ(g(n)) c1|g(n)| ≤ |f(n)| ≤ c2|g(n)| for suff. large n and const. c1, c2 > 0
f(n) = Ω(g(n)) |f(n)| ≥ c|g(n)| holds for all suff. large n and a constant c > 0

x bold font indicates vectors, x = (x1, . . . , xd)
xk multipower, xk = xk11 . . . xkdd

[xn]a(x) n-th coefficient of the series a(x) =
∑

n≥0 anx
n

t(x) generating function of rooted labelled trees
t̃(x) generating function of unrooted labelled trees

t(x, y) generating function of rooted labelled bipartite trees
t̃(x, y) generating function of unrooted labelled bipartite trees
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